
arduino-ecu-logger
Arduino + CAN-BUS shield to monitor fuel consumption and
other vehicle parameters. I first wrote this to get a fuel
economy meter on my RX-8, and later worked to reverse
engineer the messages streaming across the CAN-BUS to
see what sensor data is available on the car.

Features:

1. Live streaming of CAN-BUS content over serial link to
connected PC (with logging and viewing software on PC
side)

2. Computes fuel consumption/mpg and displays on
attached serial LCD

3. Dumps available OBD-II PIDs to microSD card



Table of Contents

arduino-ecu-logger
Materials
Arduino side
PC side
The RX-8 CAN

Materials

1. Arduino Uno
2. [Serial LCD]

(https://www.sparkfun.com/products/9394)
3. CAN-BUS shield (includes a joystick and microSD slot)
4. OBD-II to DB9 cable to connect between your car and

https://raw.githubusercontent.com/ihaque/arduino-ecu-logger/master/screenshot.png
https://www.sparkfun.com/products/9394
https://www.sparkfun.com/products/13262
https://www.sparkfun.com/products/10087


the CAN shield
5. microSD card

Arduino side

The Arduino can operate in one of four modes, selected on
bootup using the joystick:

1. (down): live vehicle stats. Show MAF-based fuel
efficiency (mpg) and consumption (oz/hr) on line 1 of
LCD; coolant temperature and throttle position on line 2.

2. (up): CAN spy. Stream CAN-BUS frames over serial
connection to attached PC for logging, reverse
engineering, and analysis.

3. (left): query ECU for supported OBD-2 PIDs and write to
microSD card.

4. (right): serial simulator. Send fake CAN-BUS frames
over serial connection to test PC interface code.

Hardware pin connections are described in logger/README.

The PC interface uses a custom framing protocol for high-
speed reliable transmission of CAN frames to the PC. Once
every 127 frames, a synchronization frame is sent over the
wire; each frame starts with a sentinel byte, and each frame
is protected by a CRC8.

PC side



python/can-dumper.py supports reading CAN frames either
from a serial-connected Arduino
(python/arduino.py:ArduinoSource) or from an on-disk log
(python/hdf5_log.py:HDF5Source), and can stream frames
simultaneously to a number of outputs, including an on-disk
log or a curses-based live display of different CAN-BUS
addresses. A demo logfile is available to play with the viewer;
run python can-dumper.py example_log.h5.

The curses interface is shown below:

The top two rows are a summary of the vehicle's current
state, as inferred from decoding data on the CAN-BUS (see
section below on the RX-8). Below that is a live-updating
view of the last frame received for each CAN-BUS

https://raw.githubusercontent.com/ihaque/arduino-ecu-logger/master/screenshot.png


destination ID, including the rtr and data fields, as well as an
estimate of the rate at which traffic is flowing to each ID.
Following these fields as inputs are changed on a car (eg,
throttle position, rpm, brake engagement, speed, steering
angle) can help decode their meaning.

The RX-8 CAN

This blog post describes some reverse engineering of CAN
messages from a Mazda 3; much of the data is the same on
my Mazda RX-8, but not all. The spreadsheet in data/ (as
well as the decoding logic in python/rx8.py) describe the
CAN IDs that I have successfully mapped on the RX-8. HDF5
logs can also be plotted using python/plot_logs.py.

http://www.madox.net/blog/projects/mazda-can-bus/

