
Yes We CAN BUS With
Arduino in 30 Seconds!
omarCartera

Hello Arduinos!

This Instructable is trying to summarize what I ended up with
after a long time of search, tutorials, trials and datasheets to
build a functional CAN BUS node. I will try to keep it as easy
and concise as possible to get you straight to a properly
working setup, saving your time for further developments

https://www.instructables.com/member/omarCartera/
https://content.instructables.com/ORIG/FE2/KDM1/J5X0ILJ1/FE2KDM1J5X0ILJ1.jpg?auto=webp&frame=1&width=1024&height=1024&fit=bounds&md=e502066d8dae4767716389861c855da2


afterwards.

The first 3 steps are the basic ones that will initiate a CAN
BUS at your home, the rest of the steps are a little bit
advanced and real-life CAN situations.

CAN BUS is a two-wire, half-duplex communication protocol
that is widely used in Automotive industry. One of its
greatest advantages is that it connects any number of ECUs
(or microcontrollers) in your car through the two-wire bus,
CAN High and CAN Low, reducing the weight of wires that
could be gained by using point-to-point communication
between ECUs.

Enough talking and let's grease our hands!

You can continue reading about CAN from wiki as it really
gives a very good and sufficient introduction to the topic.

Step 1: Build the Hardware

https://en.wikipedia.org/wiki/CAN_bus


https://content.instructables.com/ORIG/F7Y/H4LC/J5WQBT4C/F7YH4LCJ5WQBT4C.jpg?auto=webp&frame=1&width=1024&height=1024&fit=bounds&md=66136cc71bc1be240712c8b699c23eac
https://content.instructables.com/ORIG/F2K/IS9L/J5X0IES3/F2KIS9LJ5X0IES3.jpg?auto=webp&frame=1&fit=bounds&md=d3bdf0c024741df65a0f24d6960afb65


We could buy any of the plug-and-play Arduino CAN
shields, but building the hardware ourselves is easy, more
fun and cost reduction, bro.

What you need to build one node:

x1 Breadboard.
x1 MCP2515 Microchip CAN Controller.

https://content.instructables.com/ORIG/FJ5/2FUL/J5X0IMDS/FJ52FULJ5X0IMDS.jpg?auto=webp&frame=1&fit=bounds&md=d27f7f98ba4d7191f3c43a44861cb164
http://ww1.microchip.com/downloads/en/DeviceDoc/21667f.pdf


x1 MCP2551 Microchip CAN Transceiver.
x1 20KΩ Resistor.
x1 10KΩ Resistor.
x1 100Ω Resistor.
x1 16 MHz Crystal Oscillator.
x2 27 pF Capacitors.
x3 LEDs.
x3 220Ω Resistors.

Schematic key:

CAN H: CAN High and is connected to the CAN High wire of
the bus.

CAN L: CAN Low and is connected to the CAN Low wire of
the bus.

VCC: 5V power source from the Arduino.

GND: connected to Arduino's ground pin.

UNO X: as X is an integer, means connect this pin to
Arduino's digital pin X.

Here, our setup is using 3 means of communication
protocols:

1) UART: to talk to your computer's Serial monitor.

2) SPI: to talk to the CAN controller.

http://ww1.microchip.com/downloads/en/DeviceDoc/21801e.pdf


3) CAN: to talk to other neighbours in the bus.

Wire up your components to the board according to the
schematics attached above and let's move to the next step.

Step 2: Download and Install the CAN
Library

https://content.instructables.com/ORIG/F9B/T6TD/J5X0IHHK/F9BT6TDJ5X0IHHK.png?auto=webp&frame=1&width=1024&fit=bounds&md=8a724ffb5594ad861a96465e361fa6c5


In this Instructable, I'm using Seeed Studio open-source
CAN Library which you can download from their github as
shown above.

Keep the downloaded file as zipped as it is (because Arduino
likes this) and add the library to Arduino as shown above, as
well.

By this point you are ready to move to the next step to
combine both software and hardware and try your Hello CAN
examples :D

https://content.instructables.com/ORIG/F2S/FDOF/J5X0IHQS/F2SFDOFJ5X0IHQS.png?auto=webp&frame=1&fit=bounds&md=5386adb394ad0190f83a677a22b63ff2
https://github.com/Seeed-Studio/CAN_BUS_Shield


I'm currently using the latest Arduino (1.8.3) but it works with
the old versions as well.

Step 3: Upload Your First Code

The codes attached are basically the examples of the library
itself but with a gentle touch of simplicity. I think that both
files are over-commented, but feel free to ask about any bit
of code you find unclear, because when you solid
understand this basic example, you can follow up with the
next few steps and even dig deeper and tweak the codes as
you like.

The file called Send packs 8 characters (8 bytes) into a
message of the ID 0xF1, because I'm an F1 fan, and puts it on
the bus.

https://content.instructables.com/ORIG/FI2/V4UD/J5X0KS6O/FI2V4UDJ5X0KS6O.png?auto=webp&frame=1&width=1024&fit=bounds&md=ec85d7835f3c1c86230719c8e542a179


The file called Receive keeps polling the CAN receive
buffers until any message comes in. It then breaks the
incoming data into an ID, data length and the data itself.

Yes, You CAN BUS now!

Step 4: CAN Is a Message-Based
Protocol!

CAN is a message-based protocol, which means that the
messages and their content are more important than the
sender ECU itself. So, the ECUs aren't given IDs, but each
message has a unique ID in a specific bus. These IDs are
responsible for setting the priority of messages in case of
two or more ECUs are trying to put their messages on the
bus. The LOWER decimal value ID has HIGHER priority.

Given that, the message with ID = 0x05 has more priority
than our beloved message of the previous example with ID =
0xF1.

A Big Example:

If we consider ourselves in a real car, we might assume that
the message that informs a fatal problem in the engine will
be given the highest ever priority (Logical, no?). So,
whatever ECU tries to send this message will win the bus
and continue sending its message while everyone else is just



listening until it finishes.

At any time, every CAN BUS node sees the message being
sent through the bus. But not all of them read it and send it
to their ECUs. That's because in our example the rear wing
ECU or the front-right headlights ECU don't care at all about
a problem in the engine, so they see the message that
contains engine failure and ignore it. On the other hand, they
are the only ECUs who read the messages like: retract the
wing or shut the headlights.

And here it comes the idea of Message Filtering that lets an
ECU reads only the messages useful to it and ignore
everything else. And since our code allows us to know the ID
of the message, we can easily apply filtering.

The example file attached here adds only one if statement to
the basic Receive file to read only the messages with ID =
0xF2. Let this new code receive from the basic Send code
and it will print nothing.

Step 5: Extract Useful Signals From a
CAN Message



By reaching this line now we:

1. Wired up the hardware circuit.
2. Sent and received CAN messages.
3. Filtered the stream of messages and read only those

that interest us.

But all we were exchanging was a message containing
useless 8 characters forming my nickname, ahem.

What if we wanted to exchange informative signals and
simulate what might be happening in a real CAN BUS from

https://content.instructables.com/ORIG/FKU/0PMV/J5X0MMOZ/FKU0PMVJ5X0MMOZ.jpg?auto=webp&frame=1&fit=bounds&md=ab3ca6c6be7dfd50282e36273607d108


the dashboard ECU's point of view!

Because it would be waste of time, and bits actually, if you
use the 8 data bytes to represent only one piece of
information, cars might pack many signals in one message,
as shown in the picture above, telling you that for the
message of the ID = 0xF1:

The first whole byte represents the speed of the car
with a maximum value of 255 mph.
The next 14 bits represent the engine revs up to 16383
RPM. Just to be able to work with an F1 car.
The next bit tells the dashboard to turn On/Off the
check engine indicator.
The next bit tells whether the oil level is under a
threshold or not to turn ON/OFF its indicator.
The rest of the bits are not used in our made-up
message.

Check the attached files for the code, and come back here
for the explanation.

For the first piece of information, as it fits in one byte and our
code let us deal with every byte of the buffer separately, all
you need to do here is to extract the car speed directly from
the first byte only, easy!



i.e. car_speed = buf[0];

For the rest cases where the signal bits take more or less
than a byte, you will need bit manipulation to put those bits
in the right setup before reading them.

To read the RPM which lies in two different bytes (1 and 2)
you need to do as follows:

First, read the higher byte (byte 1) into a two-byte
integer, it will lay in the lower byte in engine_rpm.

unsigned int engine_rpm = buf[1];

Then, shift this value 8 bits to the left to put the higher
byte you read in its right position.

engine_rpm = engine_rpm << 8;

Now, mask off all byte 2 bits except the first six bits
used for the RPM signal.

char temp = buf[2] & 0x3F;

Here, we just need to add the higher byte to the lower
one and get our final value.

engine_rpm = engine_rpm + temp;

To read the value of Check Engine and Oil bits, you will
need to mask off all the bits but the one you want, piece of



cake!

Tataaaaaa! We correctly extracted all the information
embedded in the message!

Step 6: The Evolution of Breadboard to
PCB

https://content.instructables.com/ORIG/F6G/UFBV/J5X0KY37/F6GUFBVJ5X0KY37.jpg?auto=webp&frame=1&width=1024&height=1024&fit=bounds&md=cb09ec09dd5fc587efec0c1f58e3ac7d


After testing and making sure that everything is working
properly, I decided to start learning PCBs making by
converting this very project to a PCB.

Attached here are the Eagle files for the layout. The layout
was designed, printed on a copper board but not yet milled
or tested, you can revise the design and give your comments
below, you can also print it and make your own PCB and then
tell us what you ended up with. And you can even suggest

https://content.instructables.com/ORIG/FEW/CEBG/J5X0KY38/FEWCEBGJ5X0KY38.png?auto=webp&frame=1&fit=bounds&md=af3fcc5826d9f3d403140ef55afadec0


enhancements to the layout design!

Step 7: Have a Little Chat With Your Car

Have you ever been to your mechanic complaining from a

https://content.instructables.com/ORIG/F98/AXF9/J5X0MI86/F98AXF9J5X0MI86.png?auto=webp&frame=1&fit=bounds&md=663f58df415be95a71bbf0895cde2d19


mysterious light in your dashboard and you see him plugging
some device to your car ~magic happens~ that shows you a
fault code describing in details what the non-mysterious
light means?!

Some say, with our CAN setup, we can talk to our cars
through their OBD-II port, just like the mechanic in the
previous paragraph, by sending the so called PIDs to the
OBD requesting some parameter from the car
communication buses and wait for the response message
carrying the values you asked for.

An example covering this PID part is given in the examples
section of the library, and the list of available PIDs is
available on wiki.

I didn't try it, but I will do this very soon. Take care of your
connections and read about OBD before you plug
anything to your car.

Feel free to discuss anything with us below, we are all here
to learn from each other, Peace!

https://en.wikipedia.org/wiki/On-board_diagnostics#OBD-II
https://en.wikipedia.org/wiki/OBD-II_PIDs


Participated in the 
First Time Author Contest

Be the First to Share

https://www.instructables.com/contest/fta2017/

