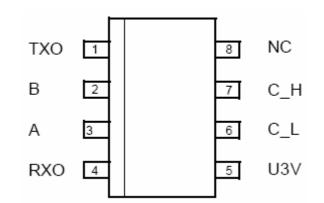

# Automotive Electronics

# **Product Information CAN Bus Transceiver – CF163**



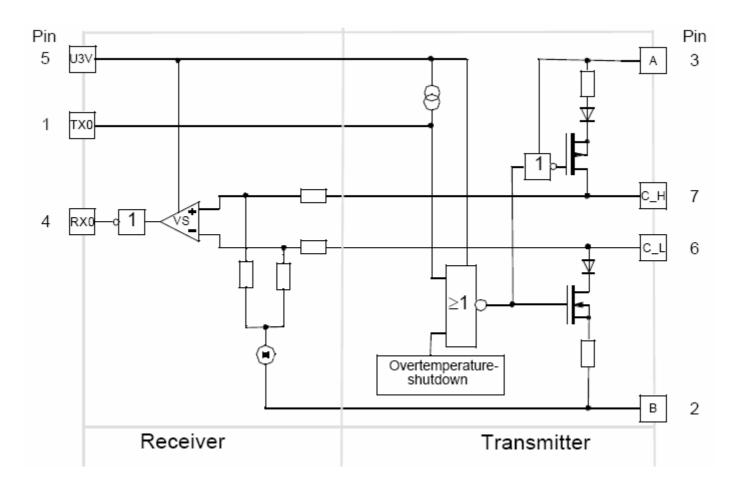


## Customer benefits:


- Excellent system know-how
- Smart concepts for system safety
- Secured supply
- Long- term availability of manufacturing processes and products
- QS9000 and ISO/TS16949 certified

#### **Features**

- The CF163 is based on ISO/DIS 11898
  - Transmitter
  - Generation of differential output signals
  - Overtemperature-shutdown
  - Slope control to reduce RFI and EMI
  - Input TX0 is compatible with 3.3V CAN
- Controller Receiver
  - Differential input with high interference suppression
  - Common mode input voltage range (VCOM) from 5 V to 12 V
  - Output RX0 is compatible with 3.3V CAN Controller
- Package: SOIC 8


The CF163 is a bidirectional transceiver for signal conditioning and processing in connection with a CAN controller. Data rates of up to 1 MBaud are supported using either shielded or non-shielded pair of lines.

#### **PIN configuration**



#### **Pin description**

| Pin | Name | Description         |
|-----|------|---------------------|
| 1   | ТХО  | Transmitter input   |
| 2   | В    | Ground              |
| 3   | А    | Supply voltage      |
| 4   | RXO  | Receive output      |
| 5   | U3V  | 3.3V- supply input  |
| 6   | C_L  | Low side bus input  |
| 7   | C_H  | High side bus input |
| 8   | NC   | Not connected       |



# Maximum ratings

All voltages, except bus voltage, are defined with respect to pin B. Positive currents flow into the IC.

| Rating                                       | Condition                                            | Symbol        | Min.  | Max.       | Unit |
|----------------------------------------------|------------------------------------------------------|---------------|-------|------------|------|
| Supply voltage (A)                           |                                                      | VA            | -0.3  | 5.5        | V    |
| Supply voltage (U3V)                         |                                                      | Vusv          | -0.3  | 3.6        | V    |
| Bus voltage (C_H,C_L)                        |                                                      | Vc_H,<br>Vc_L | -5    | 36         | V    |
| DC voltage at TXO                            |                                                      | ντχο          | -0.3V | Vu3v +0.3V |      |
| Output current at RXO                        |                                                      | Irxo          | -0,3  | 1          | mA   |
| Storage temperature                          |                                                      | Тѕт           | -40   | 150        | °C   |
| Operating temperature                        |                                                      | Тор           | -40   | 125        | °C   |
| Junction temperature (normal mode)           |                                                      | TJ            | -40   | 150        | °C   |
| Junction temperature<br>(short circuit mode) | For less than a total of 5h over the entire lifetime | TJ            |       | 190        | °C   |

All voltages, except bus voltage, are defined with respect to pin B. Positive currents flow into the IC. General conditions:  $-40^{\circ}$ C < Top <  $125^{\circ}$ C ; 4.5 V < V<sub>A</sub> < 5.5 V ; 3.0 V < V<sub>U3V</sub> < 3.6 V Comment: Dominant: V<sub>TXO</sub> = V<sub>B</sub> ; Recessive: V<sub>TXO</sub> = V<sub>U3V</sub>

| Rating         | Conditions          | Symbol | Min. | Тур. | Max. | Unit |
|----------------|---------------------|--------|------|------|------|------|
| Supply voltage |                     | VA     | 4.5  | 5    | 5.5  | V    |
| Supply voltage |                     | Vuзv   | 3.0  | 3.3  | 3.6  | V    |
| Supply current | Dominant, RA        | la     |      | 50   | 80   | mA   |
| Supply current | Recessive           | la     |      | 6    | 17   | mA   |
| Supply current | Recessive, dominant | Іизу   |      |      | 0.5  | mA   |

## **Transmitter section**

Ra: 60  $\Omega$  between C\_H and C\_L; VDiff= vc\_H-vc\_L

| Rating                                  | Conditions                                   | Symbol           | Min.  | Тур.  | Max.  | Unit |
|-----------------------------------------|----------------------------------------------|------------------|-------|-------|-------|------|
| TXO Input capacitance                   | VB < VTXO < VU3V                             | Стхо             |       | 5     |       | pF   |
| TXO High level input voltage            |                                              | Vтхо/ изv        | 0.7   |       | 1     |      |
| TXO Low level input voltage             |                                              | Vтхо/ изv        | 0     |       | 0.3   |      |
| TXO input current source                | 0 < V <sub>TXO</sub> < 0.7x V <sub>U3V</sub> | -Ітхо            | 20    | 50    | 170   | μA   |
| Bus voltage recessive                   | Recessive                                    | Vc_H, Vc_L       | 0.4VA | 0.5VA | 0.6VA |      |
| Leakage current recessive               | 0 < VC_L < 5V<br>0< VC_H < 5V                | Ic_н, Ic_L       | -0.3  |       | 0.3   | mA   |
| Input resistance                        | Recessive                                    | RIN(C_H,C_L)     |       | 20    |       | kΩ   |
| Differential input resistance           | Recessive                                    | RDiff(C_H,C_L)   |       | 40    |       | kΩ   |
| Differential output voltage dominant    | Dominant, RA<br>4.75V < VA < 5.5V            | VDiff= VC_H-VC_L | 1.5   |       | 3     | V    |
| Differential output voltage recessive   | Recessive                                    | VDiff= VC_H-VC_L | -500  | 0     | 50    | mV   |
| Supply current in case of short circuit |                                              | la               |       | 140   |       | mA   |
| Thermal resistance                      |                                              | Rthj-ambient     |       | 200   |       | K/W  |
| Overtemperature- shutdown               |                                              | Tj               |       | 180   | 190   | °C   |

#### **Receiver section**

RA: 60  $\Omega$  between C\_H and C\_L; VDiff=VC\_H-VC\_L

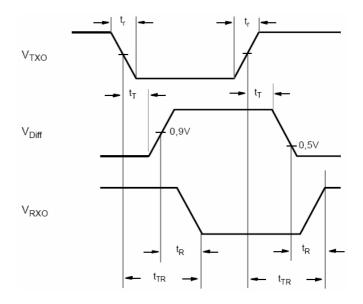
| Rating                        | Conditions                                                 | Symbol    | Min.  | Тур. | Max.   | Unit |
|-------------------------------|------------------------------------------------------------|-----------|-------|------|--------|------|
| RXO High level output voltage | V <sub>Diff</sub> < 0,4V<br>I <sub>RXO</sub> = -0.3mA      | Vrxo/ u3v | 0.9VA |      | 1      |      |
| RXO Low level output voltage  | V <sub>Diff</sub> > 1V<br>I <sub>RXO</sub> = 1mA           | VRXO      |       |      | 0.5    | V    |
| Input signal threshold        | -2V < V <sub>C_H</sub> < 7V<br>-2V < V <sub>C_L</sub> < 7V | VDiff     | 0.1VA |      | 0.18VA |      |
| Differential input hysteresis | VHYS=VDiff.high -<br>VDIFF.low                             | VHYS      |       | 200  |        | mV   |

### **Dynamic characteristics**

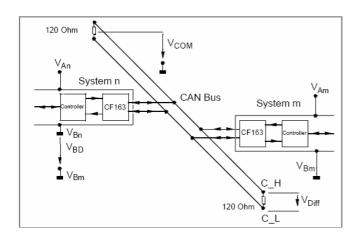
General conditions:

Ca: 47 pF between C\_H and C\_L, Va= 5V, tr < 5ns Crxo: 20 pF between RXO and B, Ra: 60  $\Omega$  between C\_H and C\_L

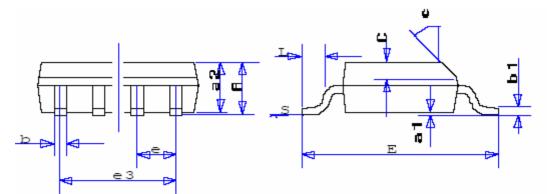
| Rating                        | Conditions | Symbol          | Min. | Тур. | Max. | Unit |
|-------------------------------|------------|-----------------|------|------|------|------|
| Signal delay TXO to C_H,C_L   |            | tτ              |      | 50   |      | ns   |
| Differential output slew rate |            | SR              |      | 40   |      | V/µs |
| Signal delay C_H,C_L to Rxo   |            | tr              |      |      | 150  | ns   |
| Signal delay TXO to RXO       |            | t <sub>TR</sub> |      | 150  | 280  | ns   |


## Functional description

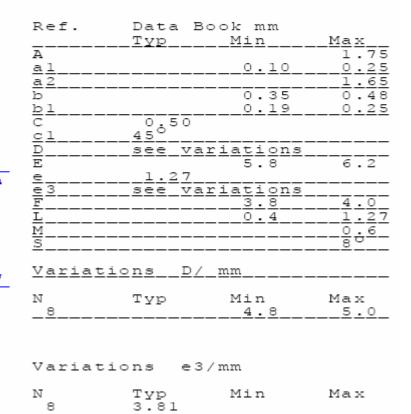
# Timing diagram


The CF163 is used as an interface between a 3.3V-CAN controller and the physical bus. The device provides transmitting capability to the 3.3V-CAN controller.

### **Functional table**


| TXO              | C_H              | C_L              | Bus State | RXO |
|------------------|------------------|------------------|-----------|-----|
| L                | Н                | L                | Dominant  | L   |
| H<br>or floating | Floating<br>VA/2 | Floating<br>VA/2 | Recessive | Н   |




## Application note



D



М



# Contact

Robert Bosch GmbH Sales Semiconductors Postbox 13 42 72703 Reutlingen Germany Tel.: +49 7121 35-2979 Fax: +49 7121 35-2170

#### Robert Bosch Corporation Component Sales 38000 Hills Tech Drive Farmington Hills, MI 48331 USA Tel.: +1 248 876-7441 Fax: +1 248 848-2818

#### Robert Bosch K.K.

Component Sales 9-1, Ushikubo 3-chome Tsuzuki-ku, Yokohama 224 **Japan** Tel.: +81 45 9 12-83 01 Fax: +81 45 9 12-95 73

#### E-Mail: bosch.semiconductors@de.bosch.com

Internet: www.bosch-semiconductors.de

© 02/2006 All rights reserved by Robert Bosch GmbH including the right to file industrial property rights Robert Bosch GmbH retains the sole powers of distribution, such as reproduction, copying and distribution. For any use of products outside the released application, specified environments or installation conditions no warranty shall apply and Bosch shall not be liable for such products or any damage caused by such products.