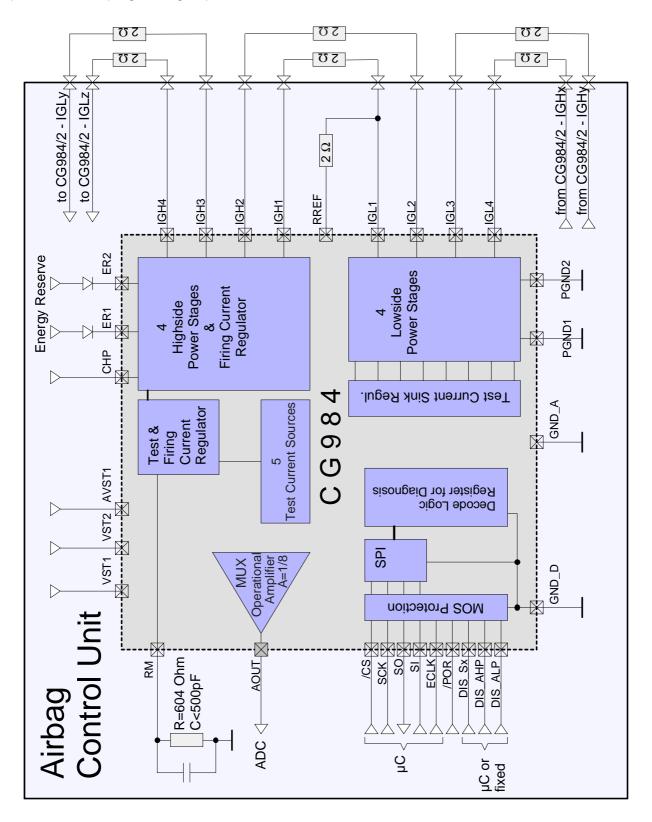
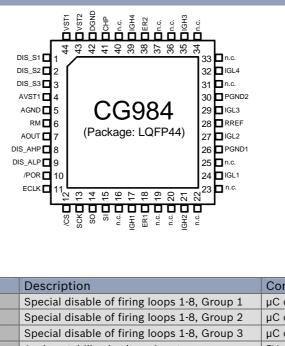

Automotive Electronics

Product Information 4-Loop Firing IC – CG984

Customer benefits:


- Excellent system know-how
- Smart concepts for system safety
- Secured supply
- Long- term availability of manufacturing processes and products
- QS9000 and ISO/TS16949 certified

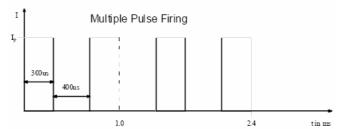

Following the successful implementation of the CG685/CG687 Quad- and Dual Firing Loop ICs, Bosch Automotive Electronics will move along with the introduction of a new generation of a Quad Firing IC for DC firing, CG984, fully compatible to the new 8 channel squib driver CG988. The CG984 is being designed by utilizing leading-edge automotive ASIC processes with 0.8µm feature size. The superior performance with respect to precision and reliability and the well-proven safety concept of its predecessors will be combined with a variety of new features as required by the quickly evolving next generations of electronic safety systems.

Features

- Optimized firing concept with 2 firing modes for efficient energy management
- Firing current >2A for 3ms, single pulse
- Energy reserve voltage up to 35V
- Full cross coupling capability (highside and lowside drivers placed on different ASICs)
- Firing current counter, 4 bit per firing loop
- High precision firing loop diagnostics (shorts, leakage, squib resistance)
- 15 channel analog multiplexer with tristate mode to monitor squib pins and supply voltages
- Sophisticated safety concept (power-on reset, disable pins for highside and for lowside stages, redundant firing path circuitry)
- 3 safety disable pins to lock 3 groups of up to 4firing-loops
- All functions controlled via 8MHz, 16 bit bidirectional SPI
- 5V/3.3V systems compatibility
- QFP44 package

(Example for cross coupling of firing loops 3-4 shown)

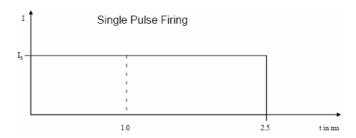
Pin description


No	Name	Class.	Description	Comments / Recommended Circuit
1	DIS_S1	In	Special disable of firing loops 1-8, Group 1	μC or fixed
2	DIS_S2	In	Special disable of firing loops 1-8, Group 2	μC or fixed
3	DIS_S3	In	Special disable of firing loops 1-8, Group 3	μC or fixed
4	AVST1	Supply	Analog stabilised voltage input	5V
5	AGND	Supply	Analog ground	GND
6	RM	In	Test current adjust	604Ω ± 1%, C<500pF
7	AOUT	Out	Analog multiplexer output	μC, A/D
8	DIS_AHP	In	Disable all highside power stages	μC
9	DIS_ALP	In	Disable all lowside power stages	μC
10	/POR	In	Power on reset, active low	RESET circuit
11	ECLK	In	External clock, 2 MHz	μC, Clock 2MHz
12	/CS	In	Chip select	μC, SPI
13	SCK	In	Serial clock, 8MHz	μC, SPI, Clock 8MHz max.
14	SO	Out	Slave out	μC, SPI
15	SI	In	Slave in	μC, SPI
16	Not connected			
17	IGH1	Out	Igniter loop high, channel 1	Squib loop 1, highside
18	ER1	Supply	Energy reserve voltage firing loop 1,2	33V±2V, energy reserve
19	Not connected			
20	Not connected			
21	IGH2	Out	Igniter loop high, channel 2	Squib loop 2, highside
22	Not connected			
23	Not connected			
24	IGL1	In	Igniter loop low, channel 1	Squib loop 1, lowside
25	Not connected			
26	PGND1	Supply	Power ground firing loop 1,2	GND
27	IGL2	In	Igniter loop low, channel 2	Squib loop 2, lowside
28	RREF	Out	Reference resistor	Expected total firing loop resistance
29	IGL3	In	Igniter loop low, channel 3	Squib loop 3, lowside
30	PGND2	Supply	Power ground firing loop 3,4	GND
31	Not connected			
32	IGL4	In	Igniter loop low, channel 4	Squib loop 4, lowside
33	Not connected			
34	Not connected			
35	IGH3	Out	Igniter loop high, channel 3	Squib loop 3, highside
36	Not connected			
37	Not connected			
38	ER2	Supply	Energy reserve voltage firing loop 3,4	33V±2V, energy reserve
39	IGH4	Out	Igniter loop high, channel 4	Squib loop 4, highside
40	Not connected			
41	CHP	Supply	Charge pump voltage	VERx+7V
42	DGND	Supply	Digital ground	GND
43	VST2	Supply	Digital 3.3V/5V stabilized voltage input	3.3V/5V (according to mC)
44	VST1	Supply	Digital 5V stabilized voltage input	5V

Dual Firing Mode Concept

The CG984 operates in two different firing modes depending on the energy reserve voltage at pins ER1-ER2 (the proper firing mode is set by the CG984 and is not accessible by SPI command). Starting the firing sequence with an energy reserve voltage of 35V, CG984 fires with multiple pulses at high current level for an efficient energy management. The nominal firing current is 3A. As the energy reserve voltage falls beyond VER(nom)=23.5V the second mode (single pulse firing mode) is enabled with a minimal firing current of 2A. The reduced firing current for single pulse ensures full energy for the squib down to low energy reserve voltages. The pulse mode of the selected loop is determined by the ASIC and remains unchanged during the complete firing sequence. The gain in efficiency in comparison to conventional DC firing concepts is in the range of 20 to 25 percent. The dual firing mode concept operates without any additional effort by μ C.

To ensure an optimized firing of both high energy and low energy squibs two different time frames are defined: 1ms for low energy squibs and 2.5ms for their high energy counterparts. The firing sequence can be extended up to 3ms with full short circuit protection.


Multiple pulse firing

VER(nom) • 23.5 V

IP: 2.55A ... 3.45A, nominal 3.0A Firing time adjustable by software.

Single pulse firing

VER(nom) < 23.5 V

Is: 2.0A ... 2.8A, nominal 2.4A

Firing time adjustable by software.

Maximum ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
	VER1-2	-0.3		36	V
	Vснр	-0.3		36	V
Supply voltages	VvsT1	-0.3		7	V
	V _{AVST1}	-0.3		7	V
	Vvst2	-0.3		7	V
Power ground	VpgND12	-0.3		0.3	V
Digital ground	VDGND	-0.3		0.3	V
	Vigh14	-0.3		36	V
Firing loops, static	Vigl14	-0.3		36	V
	VRREF	-0.3		36	V
Junction temperature	Tj	-40		150	°C
Operating temperature	T _{amb}	-40		105	°C
ESD classification					
- Human body, C=100pF, R=1.5kΩ	Vнвм	-2000		2000	V

Electrical characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
	V _{ER1}	10		35	V
	VER2-4	5.2		35	V
Supply voltages	V _{CHP}	V _{ERmin} +7		35	V
Supply voltages	VvsT1	4.7	4.9	5.1	V
	V _{AVST1}	4.7	4.9	5.1	V
	Vvst2	3.1/4.7*	3.3/4.9*	3.5/5.1*	V

 $Rsquib=2\Omega$

Parameter	Symbol	Min.	Тур.	Max.	Unit	
Current reference	R _{RM}		604		Ω	
(AVST1=4.9V)	Irm	-4%	2	4%	mA	
Test current source						
Ratio test/ reference current, IRM=2mA	Irref/Irm	18.5	19.75	21		
Tracking of test current source, 0≤V _{IGH} ≤0.5V	lіgнx/lіgну	0.99	1.00	1.1		
Test current sink						
Saturation voltage, IIGL=40mA	VigL	10	20	40	mV	
Tracking of saturation voltage, lowside	Viglx/Vigly	-20%	1	20%		
Current limitation, VIGL<18V, t<3ms	ligL	60	120	180	mA	
Voltage divider at IGLx, IGHx						
Pull up resistor for leakage tests	Righx,Riglx	6	12	20	kΩ	
Pull down resistor for leakage tests	Righx,Riglx	3	6	10	kΩ	
Quiescent potential	Vighx,Viglx	-5%	AVST1/3	5%	V	
Highside power stage						
Firing current (ton ≤ 3ms, Ver ≤ 35	iV)					
Switching voltage between firing modes	Vsw	22	23.5	25	V	
Pulse mode, VER>VSW	-lighx	2.55	3.0	3.45	A	
Single pulse mode, VER <vsw< td=""><td>-lighx</td><td>2.0</td><td>2.4</td><td>2.8</td><td>A</td></vsw<>	-lighx	2.0	2.4	2.8	A	
Duty cycle, pulse mode, error<1%		41.5	43	50	%	
Drain-source on-state resistance (TJ≤105°C, IDS=0.5A)	RDS(on)		0.8	1.2	Ω	
Drain-source voltage (TJ≤105°C, IDS=2A)	V _{DS(min)}			3	V	
Lowside power stage						
Firing current (ton ≤ 2.5 ms, Ver ≤ 35 V)						
Current load capacity (TJ≤105°C)	liglx	3.5			A	
Drain-source on-state resistance	RDS(on)		0.6	1.0	Ω	
(TJ≤105°C, IDS=0.5A)						
Drain-source voltage (TJ≤105°C, IDS=2A)	V _{DS(min)}			3	V	
Firing current detection level						
Ver-Vigh>5V						
Multiple pulse mode	IFDET(MP)	1.5		IREG(MP)	A	
Single pulse mode	IFDET(SP)	1.2		IREG(SP)	A	

^{*} VvsT2 in 5V System environment

E-Mail: <u>bosch.semiconductors@de.bosch.com</u>

Contact

Robert Bosch GmbH Sales Semiconductors Postbox 13 42 72703 Reutlingen Germany

Tel.: +49 7121 35-2979 Fax: +49 7121 35-2170 Robert Bosch Corporation Component Sales 38000 Hills Tech Drive Farmington Hills, MI 48331 USA

Tel.: +1 248 876-7441 Fax: +1 248 848-2818 Robert Bosch K.K. Component Sales 9-1, Ushikubo 3-chome Tsuzuki-ku, Yokohama 224 Japan

Tel.: +81 45 9 12-83 01 Fax: +81 45 9 12-95 73

Internet: www.bosch-semiconductors.de

© **03/2006** All rights reserved by Robert Bosch GmbH including the right to file industrial property rights Robert Bosch GmbH retains the sole powers of distribution, such as reproduction, copying and distribution.

For any use of products outside the released application, specified environments or installation conditions no warranty shall apply and Bosch shall not be liable for such products or any damage caused by such products.

^{**} measured with reduced accuracy; guarantied by design