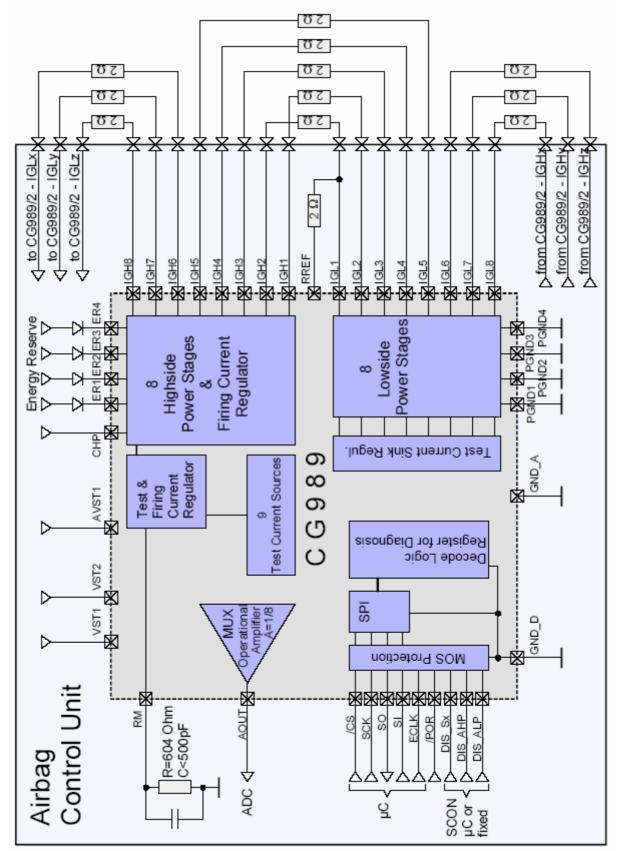
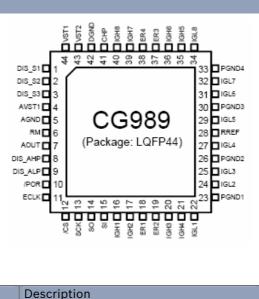

Automotive Electronics

Product Information 8-Loop Firing IC – CG989

Customer benefits:


- Excellent system know-how
- Smart concepts for system safety
- Secured supply
- Long- term availability of manufacturing processes and products
- QS9000 and ISO/TS16949 certified

Following the successful implementation of the CG685/CG687 Quad- and Dual Firing Loop ICs, Bosch Automotive Electronics will move along with the introduction of a highly integrated version of a firing IC with 8 fully integrated squib driver channels for DC firing. The CG989 is being designed by utilizing leading-edge automotive ASIC processes with 0.8µm feature size. The superior performance with respect to precision and reliability and the well-proven safety concept of its predecessors will be combined with a variety of new


Features

- Firing current adjustable by SPI command:
 - 1.2 A for 2ms
 - 1.75A for 500ì s
- Precise regulated firing current: over all tolerances better than 15 percent
- Energy reserve voltage up to 35V
- Full cross coupling capability (highside and lowside drivers placed on different ASICs)
- Firing current counter, 4 bit per firing loop
- High precision firing loop diagnostics (shorts, leakage, squib resistance)
- 26 channel analog multiplexer with tristate mode to monitor squib pins and supply voltages
- Sophisticated safety concept (power-on reset, disable pins for highside and for lowside stages, redundant firing path circuitry)
- 3 safety disable pins to lock groups of up to 8 firing-loops
- All functions controlled via 8MHz, 16 bit bidirectional SPI
- 5V/3.3V systems compatibility
- QFP44 package

(Example for cross coupling of firing loops 6-8 shown)

SCON: Safety Controller

PIN description

No	Name	Class.	Description	Comments / Recommended Circuit
1	DIS_S1	In	Special disable of firing loops 1-8, Group 1	μC or fixed
2	DIS_S2	In	Special disable of firing loops 1-8, Group 2	μC or fixed
3	DIS_S3	In	Special disable of firing loops 1-8, Group 3	μC or fixed
4	AVST1	Supply	Analog stabilised voltage input	5V
5	AGND	Supply	Analog ground	GND
6	RM	In	Test current adjust	604Ω± 1%, C<500pF
7	AOUT	Out	Analog multiplexer output	μC, A/D
8	DIS_AHP	In	Disable all highside power stages	μC
9	DIS_ALP	In	Disable all lowside power stages	μC
10	/POR	In	Power on reset, active low	RESET circuit
11	ECLK	In	External clock, 2 MHz	µC, Clock 2MHz
12	/CS	In	Chip select	μC, SPI
13	SCK	In	Serial clock, 8MHz	µC, SPI, Clock 8MHz max.
14	SO	Out	Slave out	μC, SPI
15	SI	In	Slave in	μC, SPI
16	IGH1	Out	Igniter loop high, channel 1	Squib loop 1, highside
17	IGH2	Out	Igniter loop high, channel 2	Squib loop 2, highside
18	ER1	Supply	Energy reserve voltage firing loop 1,2	25V, energy reserve
19	ER2	Supply	Energy reserve voltage firing loop 3,4	25V, energy reserve
20	IGH3	Out	Igniter loop high, channel 3	Squib loop 3, highside
21	IGH4	Out	Igniter loop high, channel 4	Squib loop 4, highside
22	IGL1	In	Igniter loop low, channel 1	Squib loop 1, lowside
23	PGND1	Supply	Power ground firing loop 1,2	GND
24	IGL2	In	Igniter loop low, channel 2	Squib loop 2, lowside
25	IGL3	In	Igniter loop low, channel 3	Squib loop 3, lowside
26	PGND2	Supply	Power ground firing loop 3,4	GND
27	IGL4	In	Igniter loop low, channel 4	Squib loop 4, lowside
28	RREF	Out	Reference resistor	Expected total firing loop resistance
29	IGL5	In	Igniter loop low, channel 5	Squib loop 5, lowside
30	PGND3	Supply	Power Ground Firing Loop 5,6	GND
31	IGL6	In	Igniter loop low, channel 6	Squib loop 6, lowside
32	IGL7	In	Igniter loop low, channel 7	Squib loop 7, lowside
33	PGND4	Supply	Power ground riring loop 7,8	GND
34	IGL8	In	Igniter loop low, channel 8	Squib loop 8, lowside
35	IGH5	Out	Igniter loop high, channel 5	Squib loop 5, highside
36	IGH6	Out	Igniter loop high, Channel 6	Squib loop 6, highside
37	ER3	Supply	Energy reserve voltage firing Loop 5,6	25V, energy reserve
38	ER4	Supply	Energy reserve voltage firing Loop 7,8	25V, energy reserve
39	IGH7	Out	Igniter loop high, channel 7	Squib Loop 7, highside
40	IGH8	Out	Igniter loop high, channel 8	Squib Loop 8, highside
41	CHP	Supply	Charge pump voltage	VERx+7V
42	DGND	Supply	Digital ground	GND
43	VST2	Supply	Digital 3.3V/5V stabilized voltage input	3.3V/5V (according to µC)
44	VST1	Supply	Digital 5V stabilized voltage input	5V

Maximum ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
	Ver1-2	-0.3		36	V
	VCHP	-0.3		36	V
Supply voltages	Vvsti	-0.3		7	V
	VAVST1	-0.3		7	V
	Vvst2	-0.3		7	V
Power ground	VPGND12	-0.3		0.3	V
Digital ground	Vdgnd	-0.3		0.3	V
	VIGH14	-0.3		36	V
Firing loops, static	VIGL14	-0.3		36	V
	VRREF	-0.3		36	V
Junction temperature	Tj	-40		150	°C
Operating temperature	Tamb	-40		105	°C
ESD classification - Human body model,					
C=100pF, R=1.5kΩ	Vнвм	-2000		2000	V

Electrical characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
	VER1-4	5.2		35	V
	Vснр	V _{ERmin} +7		35	V
Supply voltages	Vvst1	4.7	4.9	5.1	V
Supply voltages	VAvst1	4.7	4.9	5.1	V
	Vvst2	3.1/4.7*	3.3/4.9*	3.5/5.1*	V
	Rrm	-1%	604	+1%	Ω
Current reference	Irm	-4%	2	+4%	mA
(AVST1=4.9V)	Irm	-4%	2	4%	mA
Test current source					
Ratio test/ reference current, IRM=2mA	Irref/Irm	18.5	20	21	
Tracking of test current source, 0 • VIGH • 0.5V	Ііднх/Іідну	0.99	1.00	1.01	
Test current sink					
Saturation voltage, IIGL=40mA	Vigl	15	30	60	mV
Current limitation, VIGL <18V, t<3ms	ligl	70	120	180	mA
Voltage divider at IGLx, IGHx					
Pull up resistor for leakage tests	RIGHX, RIGLX	6	12	18	KΩ
Pull down resistor for leakage tests	RIGHx,RIGLx	3	6	9	KΩ
Quiescent potential	Vighx,Viglx	-5%	AVST1/3	+5%	V
Pull down resistor for high leakage tests	RIGHx,RIGLx	1	2	3.5	KΩ

Parameter	Symbol	Min.	Тур.	Max.	Unit	
Highside power stage						
Firing current						
ton= 0.5ms, VER • 35V (ASIC controlled)	-Iіgнx	1.75	2.05	2.4	А	
ton • 2ms, Ver • 25V	-lighx	1.2	1.4	1.6	А	
Drain-source on-state resistance (TJ•105°C, IDs=0.5A)	RDS(on)		0.6	1	Ω	
Lowside power stage		41.5	43	50	%	
Firing current (ton • 2ms, VER • 35V)						
Current load capacity (TJ• 105°C)	liglx	2.5			А	
Drain-source on-state resistance (TJ • 105°C, IDs=0.5A)	RDS(on)		0.8	1.2	Ω	
Firing current detection level @ 1.75A VER-VIGH>3V	IFDET	1.2		Ireg	А	

*VVST2 in 5V System environment

Compatibility

The Airbag 8-loop firing IC CG989 is pin compatible to the Airbag 8-loop firing IC CG988. The Airbag 8-loop firing IC CG989 is pin compatible to the Airbag 4-loop firing IC's CG984 and CG985.

Contact

Robert Bosch GmbH Sales Semiconductors Postbox 13 42 72703 Reutlingen Germany Tel.: +49 7121 35-2979 Fax: +49 7121 35-2170 Robert Bosch Corporation Component Sales 38000 Hills Tech Drive Farmington Hills, MI 48331 USA Tel.: +1 248 876-7441 Fax: +1 248 848-2818 Robert Bosch K.K.

Component Sales 9-1, Ushikubo 3-chome Tsuzuki-ku, Yokohama 224 **Japan** Tel.: +81 45 9 12-83 01 Fax: +81 45 9 12-95 73

E-Mail: bosch.semiconductors@de.bosch.com

Internet: www.bosch-semiconductors.de

© 03/2006 All rights reserved by Robert Bosch GmbH including the right to file industrial property rights Robert Bosch GmbH retains the sole powers of distribution, such as reproduction, copying and distribution. For any use of products outside the released application, specified environments or installation conditions no warranty shall apply and Bosch shall not be liable for such products or any damage caused by such products.