
The Car Hacker's Handbook:
A Guide for the Penetration
Tester - Craig Smith (2016)
Chapter 8. ATTACKING ECUS AND
OTHER EMBEDDED SYSTEMS

The ECU is a common target of reverse engineering,
sometimes referred to as chip tuning. As mentioned
in Chapter 7, the most popular ECU hack is modifying the
fuel map to alter the balance of fuel efficiency and
performance in order to give you a higher-performance
vehicle. There’s a large community involved with these types
of modifications, and we’ll go into more detail on firmware
modifications like this in Chapter 13.

This chapter will focus on generic embedded-system
methods of attack as well as side-channel attacks. These
methodologies can be applied to any embedded system, not
just to the ECU, and they may even be used to modify a
vehicle with the help of aftermarket tools. Here, we’ll focus
on debugging interfaces for hardware as well as performing
side-channel analysis attacks and glitching attacks.

NOTE

To get the most out of this chapter, you should have a good
understanding of basic electronics, but I’ve done my best to
explain things within reason.

Analyzing Circuit Boards

The first step in attacking the ECU or any embedded system
in a vehicle is to analyze the target circuit board. I touched
upon circuit board analysis in Chapter 7, but in this chapter,
I’ll go into more detail about how electronics and chips work.
I’ll introduce you to techniques that can be applied to any
embedded system in the vehicle.

Identifying Model Numbers

When reversing a circuit board, first look at the model
numbers of the microcontroller chips on the board. These
model numbers can help you track down valuable
information that can be key to your analysis. Most of the

chips you’ll find on vehicle circuit boards are generic—
companies rarely make custom ones—so an Internet search
of a chip’s model number can provide you with the complete
data sheet for that chip.

As mentioned in Chapter 7, you’ll sometimes run into custom
ASIC processors with custom opcodes, especially in older
systems, which will be harder to reprogram. When you
encounter older chips like these, remove them from the
board and plug them in to an EPROM programmer in order to
read their firmware. You should be able to reprogram
modern systems directly via debugging software, like JTAG.

Once you locate a data sheet, try to identify the
microcontrollers and memory locations on each chip to
determine how things are wired together and where to find
diagnostic pins—a potential way in.

Dissecting and Identifying a Chip

If you can’t find a model number, sometimes all you’ll have to
go on is the chip’s logo (after a while, you’ll find that you
start to recognize chip logos) and a few of its product codes.
The logo shown in Figure 8-1 is for STMicroelectronics. At
the top of the chip is the model number—in this case,
STM32F407—which may be hard to read because it’s
engraved. Often, a light-up magnifier or a cheap USB
microscope can prove very handy in reading these markings.

Go to http://www.st.com/ to find the data sheet for the
STM32F series chips, specifically the 407 variety. Much like
VIN numbers, model numbers are often broken down into
sections representing model number and different
variations. There’s no standard for how to break down these
numbers, however, and every manufacturer will represent
their data differently.

Figure 8-1: STM32 chipset identification

Below the chip’s model number is the code—in this case,
VGT6—which tells you the specific features, such as USB
support, available on the chip. If you look up the model
number in conjunction with the ST code, you’ll learn that the

STM32F407Vx series is an ARM Cortext M4 chip with
support for Ethernet, USB, two CANs, and LIN as well as
JTAG and Serial Wire Debug.

To determine the function of the various pins, scan the data
sheet to find the package pinout diagrams, and look for the
package that matches yours for pin count. For example, as
you can see in Figure 8-1, each side of the chip has 25 pins
for a total of 100, which matches the LQFP100 pinout in the
data sheet shown in Figure 8-2.

Each chip will usually have a dot or dimple at pin 1
(see Figure 8-1), and once you identify pin 1, you can follow
the pinout to determine each pin’s function. Sometimes
you’ll find two dimples, but one should be slightly more
pronounced.

Sometimes pin 1 on a chip is indicated by a cut-off corner. If
you find nothing on a chip that allows you to identify pin 1,
look for things you can identify. For example, if another chip
on the board is a common CAN transceiver, you could use a
multitool to trace the lines to figure out which pins it
connects to. You could then reference the data sheet to see
which side of the chip contains these CAN pins. To do this,
put your multimeter in continuity mode. Once in continuity
mode, it will beep if you touch both pins to the same trace,
indicating that they’re connected. Once you’re able to
identify just one pin, you can use that information together

with the pinout to deduce the pin layout.

Figure 8-2: STM32F4 data sheet pinout

Debugging Hardware with JTAG and Serial Wire Debug

You can use a variety of debugging protocols to debug chips
just as you do software. To determine which protocol your
target chip supports, you’ll need to use the chip’s data

sheet. You should be able to use a chip’s debugging port to
intercept its processing and download and upload
modifications to the chip’s firmware.

JTAG

JTAG is a protocol that allows for chip-level debugging and
downloading and uploading firmware to a chip. You can
locate the JTAG connections on a chip using its data sheet.

JTAGulator

You’ll often find pads on a chip’s circuit board that are
broken out from the chip itself and that may give you access
to the JTAG pins. To test the exposed pads for JTAG
connections, use a tool like JTAGulator, shown in Figure 8-3.
Plug all of the chip’s exposed pins in to the JTAGulator, and
set the voltage to match the chip. JTAGulator should then
find any JTAG pins and even walk the JTAG chain—a method
of linking chips over JTAG—to see whether any other chips
are attached.

Figure 8-3: JTAGulator with a Bus Pirate cable

JTAGulator supports either screw terminals or the use of a
Bus Pirate cable (as in Figure 8-3) for probing. Both the
JTAGulator and the Bus Pirate cable use a serial interface to
configure and interact with a chip.

Debugging with JTAG

You can debug a chip with JTAG using just two wires, but it’s
more common to use four or five pin connections. Of course,
finding the JTAG connection is only the first step; usually,
you’ll need to overcome additional protections that prevent

you from just downloading the chip’s firmware in order to do
anything interesting.

Developers will disable JTAG firmware via either software or
hardware. When disabling JTAG in software, the programmer
sets the JTD bit, which is usually enabled twice via software
during runtime. If the bit it isn’t called twice within a short
time, it’s not set. It’s possible to defeat a software protection
like this by using a clock or power-glitching attack to skip at
least one of these instructions. (We’ll discuss glitching
attacks later in “Fault Injection” on page 148.)

The other way to disable JTAG on a chip is to attempt to
permanently disable programming by setting the JTAG fuse
—OCDEN and JTAGEN—and thereby disabling both
registers. This is harder to bypass with glitch attacks, though
voltage glitching or the more invasive optical glitches may
succeed. (Optical glitches entail decapping the chip and
using a microscope and a laser, so they’re very costly. We
won’t be covering them in this book.)

Serial Wire Debug

Although JTAG is the most commonly used hardware
debugging protocol, some microcontrollers—such as the
STM32F4 series, which is commonly used in automotive
applications because it has onboard CAN support—primarily
use Serial Wire Debug (SWD). While the ST32F4 series of

ICs can support JTAG, they’re often wired to support only
SWD because SWD requires only two pins instead of the five
used for JTAG. SWD also allows overlapping of the JTAG
pins, so these chips may support both JTAG and SWD by
using the pins labeled TCK and TMS. (These pins are
labeled SWCLK and SWIO in the data sheet.) When
debugging ST chips, you can use a tool like ST-Link to
connect, debug, and reflash the processor. ST-Link is cheap
(about $20) compared to some of its JTAG counterparts.
You can also use a STM32 Discovery board.

The STM32F4DISCOVERY Kit

The STM32F4DISCOVERY kit (sold by STM) is another tool
you can use to debug and program these chips. These are
actually developer boards with their own programmer. They
cost about $15 and should be in your car hacking tool set.
The benefit of using the Discovery kit is that it’s both a
cheap programmer and a development board that you can
use to to test modifications to the chip’s firmware.

In order to use the Discovery kit as a generic programmer,
remove the jumpers from the pins labeled ST-Link, and then
connect the six pins on the opposite side
labeled SWD (see Figure 8-4). Pin 1 starts next to the white
dot on the SWD connector.

Table 8-1 shows the pinout.

Table 8-1: Pinout for the STM32F4DISCOVERY kit

STM32 chip STM32F4DISCOVERY kit

VDD_TARGET Pin 1

SWLCK Pin 2

GND Pin 3

SWDIO Pin 4

nRESET Pin 5

SWO Pin 6

Figure 8-4: Programming a STM32 chip via the

STM32F4DISCOVERY kit

You’ll most likely need to provide power to the target device,
but instead of using pin 1 on the SWD connector, use the 3V
pin from the Discovery portion of the board, as shown
in Figure 8-4. (Notice in the pinout that the Discovery kit
doesn’t use all six pins for SWD; pins nRESET and SWO are
optional.)

Once you’re connected, you’ll most likely want to read and
write to the firmware. If you’re running Linux, you can get the
ST-Link from GitHub at https://github.com/texane/stlink/.
Once you have those utilities installed, you’ll not only be able
to read and write to the chip’s flash memory, but you can
also start a gdbserver to work as a real-time debugger.

The Advanced User Debugger

Renesas is a popular automotive chipset used in ECUs
(see Figure 8-5). It has its own implementation over JTAG
called the Advanced User Debugger (AUD). AUD provides
the same functionality as JTAG but with its own proprietary
interface. As with SWD, AUD requires an interface specific to
it in order to communicate with Renesas chipsets.

Figure 8-5: 2005 Acura TL ECU with Renesas SH MCU and
AUD port

Nexus

Nexus from Freescale/Power Architecture (now NXP) is
another proprietary JTAG interface. Like AUD and SWD, this
in-circuit debugger requires its own device in order to
interface with it. When dealing with Freescale chips, such as
the MCP5xxx series, keep in mind that the debugger may be
Nexus.

The Nexus interface uses a dedicated set of pins that should

be defined in the chipset’s data sheet. Look for the EVTI/O
pins in the auxiliary port section of the data sheet.

Side-Channel Analysis with the ChipWhisperer

Side-channel analysis is another hardware attack used to
bypass ECU and other microcontroller protections and to
crack built-in cryptography. This type of attack takes
advantage of various characteristics of embedded electronic
systems instead of directly targeting specific hardware or
software. Side-channel attacks take many forms, and some
can cost anywhere from $30,000 to $100,000 to perform
because they require specialized equipment like electron
microscopes. Expensive side-channel attacks like these are
often invasive, meaning they’ll permanently alter the target.

We’ll focus on simpler and cheaper side-channel attacks
with the help of the ChipWhisperer, a noninvasive tool from
NewAE Technologies (http://newae.com/chipwhisperer/).
The ChipWhisperer is an open source side-channel analysis
tool and framework that costs just over $1,000—
considerably less than its non–open source counterparts,
which typically start around $30,000.

NOTE

It’s possible to accomplish the attacks I’ll discuss at less of a
cost by building a specialized device, but the ChipWhisperer

is the cheapest tool that covers all the main bases. Also,
ChipWhisperer tutorials target open source designs, which
makes them ideal for this book, since we can’t use examples
from specific manufacturers due to copyright. I’ll integrate
the NewAE tutorials throughout this chapter when
demonstrating each attack.

The ChipWhisperer has an optional package that includes a
target development board called the MultiTarget Victim
Board (see Figure 8-6). This board is mainly used for
demonstration and training, and we’ll use it as the target of
our demos as well.

Figure 8-6: MultiTarget Victim Board

The MultiTarget Victim Board is basically three separate
systems: an ATmega328, a XMEGA, and a smart card reader.
(The ChipWhisperer can perform man-in-the-middle attacks
on smart cards, but because cars don’t really use smart
cards, we won’t cover that feature here.)

By changing jumpers on the board, you can pass power to
enable or disable different systems, but be careful to enable
only one section at a time, or you may short the board. Pay
attention to the jumper settings before testing.

Installing the Software

First install the ChipWhisperer software. The following
instructions are for Linux, but you can find detailed setup
instructions for Windows
at http://www.newae.com/sidechannel/cwdocs/.

The ChipWhisperer software requires Python 2.7 and some
additional Python libraries to run. First, enter the following
code:

$ sudo apt-get install python2.7 python2.7-dev
python2.7-libs python-numpy
python-scipy python-pyside python-configobj python-
setuptools python-pip git
$ sudo pip install pyusb-1.0.0b1

To get the ChipWhisperer software, you can either download

a stable version as a ZIP file from the NewAE site or grab a
copy from the GitHub repository, as shown here:

$ git clone git://git.assembla.com/chipwhisperer.git
$ cd chipwhisperer
$ git clone git://git.assembla.com/openadc.git

The second git command downloads OpenADC. The
OpenADC board of the ChipWhisperer is the oscilloscope
part, which measures voltage signals and is basically the
heart of the ChipWhisperer system. Use the following
commands to set up the software (you should be root in the
ChipWhisperer directory):

$ cd openadc/controlsw/python
$ sudo python setup.py develop
$ cd software
$ sudo python setup.py develop

The hardware is already natively supported by Linux, but you
should add a group for the normal user that you’ll test so
that the user can have access to the device without needing
root privileges. To allow non-root users to use the
equipment, create a udev file, such as /etc/udev/rules.d/99 -
ztex.rules, and add the following to that file:

SUBSYSTEM=="usb", ATTRS{idVendor}=="04b4",
ATTRS{idProduct}=="8613",

MODE="0664", GROUP="plugdev"
SUBSYSTEM=="usb", ATTRS{idVendor}=="221a",
ATTRS{idProduct}=="0100",
MODE="0664", GROUP="plugdev"

Also, create a file for the AVR programmer
called /etc/udev/rules.d/ 99-avrisp.rules:

SUBSYSTEM=="usb", ATTRS{idVendor}=="03eb",
ATTRS{idProduct}=="2104",
MODE="0664", GROUP="plugdev"

Now add yourself (you’ll need to log out and back in for
these new permissions to take effect):

$ sudo usermod -a -G plugdev <YourUsername>
$ sudo udevadm control –reload-rules

Connect the ChipWhisperer to your machine by plugging a
mini-USB cable in to the side of the ChipWhisperer box. The
green System Status light on the top should light up, and
your ChipWhisperer should now be set up or at least in its
unconfigured core.

Prepping the Victim Board

To prep the Victim Board—or device under test (DUT), as it’s
referred to in the ChipWhisperer documentation—download
the AVR Crypto library (the library isn’t included with the

ChipWhisperer framework by default due to export laws) by
entering the following:

$ cd hardware/victims/firmware
$ sh get_crypto.sh

We’ll use the AVRDUDESS GUI to program our Victim Board.
You can get AVRDUDESS from its GitHub repository
at https://github.com/zkemble/avrdudess/ or grab binaries
from sites such as http://blog.zakkemble.co.uk/avrdudess-
a-gui-for-avrdude/. You’ll need to install mono for this to
work:

$ sudo apt-get install libmono-winforms2.0-cil

Next, make sure the Victim Board is set up to use the
ATmega328 portion by changing the jumper settings to
match the layout in Figure 8-7.

Figure 8-7: Jumper settings for the MultiTarget Victim Board

Your ChipWhisperer should have come with a 20-pin ribbon
cable. Plug this cable in to the back of the ChipWhisperer
and the USB A/B cable in to the side, as shown in Figure 8-8.
Dmesg should report seeing an AVRISP mkII plugged in,
which is the programmer that we’ll use to program the target
board. This will allow us to perform testing without
disconnecting the device.

Figure 8-8: Wiring up the MultiTarget Victim Board

Finally, attach the SMA cable from the VOUT on the target
board to the LNA connector in CH-A on the front of the
ChipWhisperer. Table 8-2 shows the pinout. We’ll use this
setup for our demos unless otherwise specified.

Table 8-2: Pinout for the MultiTarget Victim Board

Victim Board ChipWhisperer Component

20-pin
connector

Back of the
ChipWhisperer

20-pin ribbon
cable

VOUT LNA on CH-A SMA cable

Computer Side of the
ChipWhisperer

Mini USB cable

Brute-Forcing Secure Boot Loaders in Power-Analysis
Attacks

Now you have your Victim Board set up, we’ll look at using a
power-analysis attack to brute-force a password. Power-
analysis attacks involve looking at the power consumption of
different chipsets to identify unique power signatures. By
monitoring the power consumption for each instruction, it’s
possible to determine the type of instruction being executed.
For instance, a no-operation (NOP) instruction will use less
power than a multiply (MUL) instruction. These differences
can reveal how a system is configured or even whether a
password is correct because a correct password character
may use more power than an incorrect one.

In the following example, we’ll explore TinySafeBoot
(http://jtxp.org/tech/tinysafeboot_en.htm), a small, open
source bootloader designed for AVR systems. The
bootloader requires a password in order to make
modifications. We’ll use the ChipWhisperer to exploit a
vulnerability in its password-checking method and derive the
password from the chip. This vulnerability has been fixed in

newer versions of TinySafeBoot, but for practice, the old
version is included in the victims folder of the ChipWhisperer
framework. This tutorial is based on NewAE’s “Timing
Analysis with Power for Attacking TSB”
(http://www.newae.com/sidechannel/cwdocs/tutorialtimingp
asswd.html).

Prepping Your Test with AVRDUDESS

To begin, open AVRDUDESS and select AVR ISP mkII from
the Programmer drop-down menu. Make sure you have
ATmega328P selected in the MCU field, and then
click Detect to verify that you’re connected to the
ATmega328p (see Figure 8-9). Select the flash
file hardware/victims/firmware/ tinysafeboot-20140331 in
the Flash field.

Figure 8-9: Programming TinySafeBoot in AVRDUDESS

Click Program! and AVRDUDESS should write the
TinySafeBoot program to the ATmega.

Setting Up the ChipWhisperer for Serial
Communications

Now we’re ready for testing! We’ll use the ChipWhisperer to
set and monitor the power usage when the bootloader

checks for the password. Then, we’ll use this information to
build a tool to crack the password much faster than a
traditional brute-force method would. To begin, set up the
ChipWhisperer to communicate with the bootloader over the
bootloader’s serial interface, like this:

$ cd software/chipwhisperer/capture
$ python ChipWhispererCapture.py

The ChipWhisperer has lots of options, so we’ll go step by
step through each setting you’ll need to change.

1. In ChipWhispererCapture, go to the General Settings tab
and set the Scope Module
to ChipWhisperer/OpenADC and the Target Module
to Simple Serial, as shown in Figure 8-10.

Figure 8-10: Setting the Scope and Target types

Figure 8-11: Setting Connection and Baud

2. Switch to the Target Settings tab (at the bottom of the
window), and change the Connection setting
to ChipWhisperer. Then under Serial Port Settings, set both
TX Baud and RX Baud to 9600, as shown in Figure 8-11.

3. At the top of the screen, click the red circle next to
Scope with DIS in it. The circle should become green and
display CON.

4. The ChipWhisperer comes with a simple serial terminal
interface. Choose Tools ‣ Open Terminal to open it. You
should see a terminal like the one shown in Figure 8-12.

Figure 8-12: ChipWhisperer serial terminal

5. Set TX on Enter at the bottom of the terminal to None,
and check the box that says RX: Show non-ASCII as
hex (see Figure 8-12). Now click Connect to enable your
text areas.

6. Enter @@@ (TinySafeBoot’s start-up password) in the
text field to the left of the Send button, and click Send. The
bootloader should start with TSB and mainly contain
information about the firmware version and AVR settings.
TSB is just an identifier used by TinySafeBoot, most likely its

initials. The output should match that in Figure 8-12.

Setting a Custom Password

Now we need to set a custom password so that we can
monitor the power levels when a password is entered.

First, close the serial terminal. Then enter the following lines
in the Python console window, which is at the bottom center
of the ChipWhisperer main window.

>>> self.target.driver.ser.write("@@@")
>>> self.target.driver.ser.read(255)

We use the serial
command self.target.driver.ser.write("@@@") to send the
current password for the bootloader. Next, we enter the
serial command self.target.driver.ser.read(255) to read up to
the next 255 bytes from the bootloader to see its response
to our sending the password (see Figure 8-13).

Figure 8-13: Sending @@@ via ChipWhisperer’s Python
console

For convenience, first assign the read and write commands
to their own variables so you don’t have to enter such a long
command (the following examples assume you’ve completed
this step):

>>> read = self.target.driver.ser.read
>>> write = self.target.driver.ser.write

The password is stored in the last page of the device’s flash
memory. We’ll grab that page, remove the
confirmation ! character from the response, and write a new
password—og—to the firmware.

NOTE

You’ll find a more detailed explanation of this procedure in
the NewAE
tutorials (http://www.newae.com/sidechannel/cwdocs/tutoria
ltimingpasswd.html) or Python manuals.

Return to the Python console, and enter Listing 8-1.

>>> write('c')
>>> lastpage = read(255)
>>> lastpage = lastpage[:-1]
>>> lastpage = bytearray(lastpage, 'latin-1')
>>> lastpage[3] = ord('o')
>>> lastpage[4] = ord('g')
>>> lastpage[5] = 255

>>> write('C')
>>> write('!')
>>> write(lastpage.decode('latin-1'))

Listing 8-1: Modifying the last page of memory to set the
password to og

If the login times out, resend @@@ like so:

Once you’ve written the new characters to memory, verify
that og is the new password with write("og"), followed by
a read(255) in the Python console. Notice in Figure 8-14 that
we first try sending @@@ but that we don’t get a
TinySafeBoot response until we send the og password.

Figure 8-14: Setting the password to og

Resetting the AVR

Having changed the password, we can start reading power
signals. First, we need to be able to get out of the infinite
loop that the system goes into when we enter an incorrect
password. Write a small script to reset the AVR when this
happens. While still in the Python console, enter the
following commands to create a resetAVR helper function:

>>> from subprocess import call

>>> def resetAVR:
 call(["/usr/bin/avrdude", "-c", "avrispmkII", "-p",
"m328p"])

Setting Up the ChipWhisperer ADC

Now, set up the ChipWhisperer ADC so that it knows how to
record the power trace. Return to the ChipWhisperer main
window, click the Scope tab, and set the values as shown
in Table 8-3 and Figure 8-15.

Table 8-3: Scope Tab Settings to Set Up the OpenADC for
the Victim Board

Area Category Setting Value

OpenADC Gain
Setting

Setting 40

OpenADC Trigger
Setup

Mode Falling edge

OpenADC Trigger
Setup

Timeout 7

OpenADC ADC Clock Source EXTCLK x1 via
DCM

CW Extra Trigger
Pins

Front Panel A Uncheck

CW Extra Trigger
Pins

Target IO1 (Serial
TXD)

Check

CW Extra Trigger
Pins

Clock Source Target IO-IN

OpenADC ADC Clock Reset ADC DCM Push button

Figure 8-15: ADC values to trigger on Serial TX

Monitoring Power Usage on Password Entry

Now we’ll monitor the power usage when entering a
password to see whether we can spot a difference in power
between a valid and an invalid password. We’ll look at what
happens when we enter the now invalid password of @@@.
Recall from earlier that when the bootloader detects that
you’ve entered a wrong password, it’ll go into an infinite loop,
so we can monitor what the power usage looks like at that
point. Of course, you’ll need to exit that infinite loop, so once
you’ve tried the incorrect password and are sent into a loop,
reset the device and try to enter another password. To do
this, navigate to the password prompt in the Python console
as follows:

>>> resetAVR()
>>> write("@@@")

Now, issue the next command with the correct password,
but do not click Enter yet:

Click 1 in the green play icon in the toolbar to record one
power trace. Immediately after you do so, click Enter in the
Python console. A Capture Waveform window should open
and show you the power trace recording of the valid
password (see Figure 8-16).

Figure 8-16: Power trace of a valid password

The details of Figure 8-16 aren’t that important; the point is
to give you a feel for what a “good” signal looks like. The
thick lines you see are normal processing, and there’s a dip
around the 8,000 sample range when the processing
instructions changed. (This could be something in the
password check, but let’s not get hung up on details at this
stage.)

Now, enter an invalid password—ff:

>>> resetAVR()
>>> write("@@@")
>>> write("ff")

Figure 8-17 shows the power trace for this password.

Figure 8-17: Power trace for a password with no valid
characters

You can see that the program hangs in its infinite loop when
the power reading shifts from normal to a near consistent 0
power usage.

Now, let’s try a password with a valid first character to see
whether we notice a difference:

>>> resetAVR()
>>> write("@@@")
>>> write("of")

In Figure 8-18, one additional chunk is active before the
device enters the infinite loop. We see normal power usage,
followed by the dip at 8,000 that we saw in the first valid
reading, and then some more normal usage before the
device enters the infinite loop of 0 usage.

Figure 8-18: Power trace of a password with a valid first
character

NOTE

You can determine the size of samples used for one valid
character by measuring the length between the dip at 8,000
and the infinite loop that starts around 16,000. In this case,
we can roughly approximate that the sample size to check

one character is about 8,000 traces (16,000 – 8,000).

Scripting the ChipWhisperer with Python

Because the ChipWhisperer is written in Python, it’s highly
scriptable, so you can script these power traces to create a
brute-forcer that can get the password for the bootloader
very quickly. By setting a script to check whether the data
points of the power trace exceed a set threshold, your brute-
forcer can immediately tell whether the target character is
correct. By looking at the data values on the y-axis in Figure
8-18, we can see that when we have activity, data reaches
0.1, but when we’re in the infinite loop, it hovers around the 0
mark. If the target character is correct, the threshold for our
script can be set to 0.1, and if no data in the sample range of
a byte reaches 0.1, then we can conclude that we’re in the
infinite loop and the password character was incorrect.

For example, if the password is made up of 255 different
characters with a maximum length of 3, the password will be
one of 2553, or 16,581,375, possibilities. However, because
we can instantly detect when we have a correct character, in
a worst-case scenario, the brute-forcer will have to try only
255 × 3, or 765, possibilities. If the character doesn’t match
the set password, the bootloader jumps into the infinite loop.
On the other hand, if the password check routine waited until
the entire password was checked regardless of its
correctness, this type of timing analysis couldn’t be done.

The fact that the small code on embedded systems is often
designed to be as efficient as possible can open it up to
devastating timing attacks.

NOTE

For details on how to write your own brute-forcer for the
ChipWhisperer, see the NewAE tutorials. A sample brute-
forcer is included at http://www.nostarch.com/carhacking/.

Secure bootloaders and any embedded system that checks
for a valid code can be susceptible to this type of attack.
Some automotive systems require a challenge response or a
valid access code to access lower-level functions. Guessing
or brute-forcing these passwords can be very time
consuming and would make traditional brute-forcing
methods unrealistic. By using power analysis to monitor how
these passwords or codes are being checked, you can
derive the password, making something that would’ve been
too time consuming to crack completely doable.

Fault Injection

Fault injection, also known as glitching, involves attacking a
chip by disrupting its normal operations and potentially
causing it to skip running certain instructions, such as ones
used to enable security. When reading a chip’s data sheet,
you’ll see that attached to the range for clock speeds and

power levels is a warning that failing to stick to these ranges
will have unpredictable results—and that’s exactly what you’ll
take advantage of when glitching. In this section, you’ll learn
how to introduce faults by injecting faults into clock speeds
and power levels.

Clock Glitching

Any ECU or chip will rely on an internal clock to time its
instructions. Each time the microcontroller receives a pulse
from the clock, it loads an instruction, and while that
instruction is being decoded and executed, the next
instruction is being loaded. This means that a steady rhythm
of pulses is needed for the instructions to have time to load
and execute correctly. But what happens if there’s a hiccup
during one of these clock pulses? Consider the clock glitch
in Figure 8-19.

Figure 8-19: Normal clock cycle (top) and glitched clock
cycle (bottom)

Because the Program Counter has time to increment but not

enough time to decode and execute the instruction before
the next instruction is loaded, the microcontroller will usually
skip that instruction. In the bottom cycle of Figure 8-19,
instruction 3 is skipped because it does not have enough
time to execute before another instruction is issued. This can
be useful for bypassing security methods, breaking out of
loops, or re-enabling JTAG.

To perform a clock glitch, you need to use a system faster
than your target’s system. A field-programmable gate array
(FPGA) board is ideal, but you can accomplish this trick with
other microcontrollers, too. To perform the glitch, you need
to sync with the target’s clock, and when the instruction you
want to skip is issued, drive the clock to ground for a partial
cycle.

We’ll demonstrate a clock-glitching attack using the
ChipWhisperer and some demo software made for this kind
of attack. The Victim Board setup is almost the same as for
the power attack, except that you’ll need to change the
jumpers for the Clock pin (in the middle of the board), which
should be set only for FPGAOUT by jumping the pins
(see Figure 8-20).

Figure 8-20: MultiTarget Victim Board set for glitching

We’ll set up the ChipWhisperer to control the clock of the
ATmega328. Both the general settings and the target
settings are the same as in the power attack discussed in
“Setting Up the ChipWhisperer for Serial Communications”
on page 140; the only exception is that we’ll set the baud
rate to 38400 for both TX and RX. Enable both the Scope
and Target by switching from DIS to CON in the toolbar, as
discussed earlier. Figure 8-21 and Table 8-4 show the
complete settings.

Figure 8-21: Scope settings for glitching

Table 8-4: ChipWhisperer Main Window Settings for a
Clock-Glitch Attack

Area Category Setting Value

OpenADC ADC Clock Frequency
Counter Src

CLKGEN
Output

OpenADC CLKGEN
Settings

Desired Frequency 7.37 MHz

OpenADC CLKGEN
Settings

Reset CLKGEN
DCM

Push button

Glitch
module

Clock Source CLKGEN

CW Extra Trigger Pins Target HS IO-Out Glitch
Module

These settings give the ChipWhisperer full control of the
target board’s clock and allow you to upload the glitch demo
firmware. You’ll find the firmware for the target in the
ChipWhisperer framework in this
directory: hardware/victims/firmware/avr-glitch-examples.
Open glitchexample.c in your favorite editor and then go to
the main() method at the bottom of the code.
Change glitch1() to glitch3() in order to follow along with this
demo, and then recompile the glitchexample firmware for the
ATmega328p:

Now, upload the glitchexample.hex file via AVRDUDESS, as
we did in “Prepping Your Test with AVRDUDESS” on page

139. Once the firmware is loaded, switch to the main
ChipWhisperer window and open a serial terminal.
Click Connect, and then switch to AVRDUDESS and
click Detect. This should reset the chip so that you
see hello appear in the capture terminal. Enter a password,
and click Send. Assuming you enter the wrong password,
the capture terminal should display FOff and hang, as shown
in Figure 8-22.

Figure 8-22: A bad password example

Now return to your editor and look at
the glitchexample source code. As shown in Listing 8-2, this

is a simple password check.

for(cnt = 0; cnt < 5; cnt++){
 if (inp[cnt] != passwd[cnt]){
 passok = 0;
 }
}

if (!passok){
 output_ch_0('F');
 output_ch_0('O');
 output_ch_0('f');
 output_ch_0('f');
 output_ch_0('\n');
} else {
 output_ch_0('W');
 output_ch_0('e');
 output_ch_0('l');
 output_ch_0('c');
 output_ch_0('o');
 output_ch_0('m');
 output_ch_0('e');
 output_ch_0('\n');
}

Listing 8-2: Password check method for glitch3()

If an invalid password is entered, passok is set to 0, and the

message Foff is printed to the screen; otherwise, Welcome is
printed to the screen. Our goal is to introduce a clock glitch
that bypasses the password verification either by skipping
over the instruction that sets passok to 0 (so that it’s never
set to 0) or by jumping straight to the welcome message.
We’ll do the latter by manipulating the width and offset
percentages in the glitch settings.

Figure 8-23 shows some possible places to locate the glitch.
Different chips and different instructions react differently
depending on where your glitch is placed, so experiment to
determine which location works best for your
situation. Figure 8-23 also shows what a normal clock cycle
looks like under a scope. If we use a positive offset in the
ChipWhisperer settings, it’ll cause a brief drop in the middle
of the clock cycle. If we use a negative offset, it’ll cause a
brief spike before the clock cycle.

We’ll set the following glitch options in the ChipWhisperer to
cause a brief spike before the clock cycle by using a –10
percent offset:

Glitch width %: 7
Glitch Offset %: -10
Glitch Trigger: Ext Trigger: Continuous
Repeat: 1

Figure 8-23: Example glitch placements

Now return to the ChipWhisperer main window to set up the
CW Extras, as shown in Figure 8-24. This will configure the

ChipWhisperer to cause the clock glitch only when it gets a
signal from the trigger line.

Figure 8-24: Glitch setup in the CW Extra Settings

NOTE

Glitching is an inexact science. Different chips will respond
to settings differently, and you’ll need to play around with
settings a lot to get the timing right. Even if you fail to exploit
the clock glitch consistently, often you’ll need to get it right
only once to exploit a device.

Setting a Trigger Line

Now that we have the ChipWhisperer set up to listen for a
signal on the trigger line, we need to modify the code to use
the trigger line. The trigger line is pin 16 on the
ChipWhisperer connector. When the trigger line receives a

signal (voltage peaks), it triggers the ChipWhisperer
software to spring into action.

The trigger line is a generic input method used by
ChipWhisperer. The goal is to get the trigger line to receive a
signal just before the point we want to attack. If we were
looking at a piece of hardware and noticed a light come on
just before the area we wanted to attack, we could solder the
LED to the trigger line in order to make the ChipWhisperer
wait until just the right moment.

For this demo, we’ll modify the firmware to make the trigger
line go off in the area we want to glitch. First we’ll add some
code to the default glitch 3 example shown in Listing 8-2.
Use your favorite editor to add the defines in Listing 8-3,
toward the top of the glitchexample.c.

#define trigger_setup() DDRC |= 0x01
#define trigger_high() PORTC |= 0x01
#define trigger_low() PORTC &= ~(0x01)

Listing 8-3: Setting up trigger defines in glitchexample.c

Place a trigger_setup() inside the main() method just before
it prints hello, and then wrap your target with the trigger, as
shown in Listing 8-4.

 for(cnt = 0; cnt < 5; cnt++){
 if (inp[cnt] != passwd[cnt]){

 trigger_high();
 passok = 0;
 trigger_low();
 }
 }

Listing 8-4:
Adding trigger_high and trigger_low around passok to trigger
a glitch

Now, recompile make MCU=atmega328p, and reupload the
firmware to the Victim Board. (Make sure to set the Glitch
Trigger option to Manual in the ChipWhisperer settings
before you upload the firmware or you may accidentally
glitch the firmware upload.) Once the firmware is uploaded,
switch the Glitch Trigger option back to Ext
Trigger:Continous. Now, enter any password. If you get
a Welcome message, you’ve successfully glitched the
device, as shown in Figure 8-25.

Figure 8-25: Successfully glitching password check

Unfortunately, in the real world, you probably won’t be able
to use a trigger line in the same way because you won’t have
access to the target source or a trigger event won’t be close
enough to where you want to glitch. In such cases, you’ll
need to play with other settings and the Ext trigger offset.
Open the Glitch Monitor under Tools to experiment with
different settings.

Power Glitching

Power glitching is triggered like clock glitching: you feed the
target board the proper power at a steady rate, and when
you want to trigger unexpected results at particular
instructions, you either drop or raise the voltage to interrupt
that instruction. Dropping the voltage is often safer than

raising it, so try that first. Each microcontroller reacts
differently to power glitching, so play around at different
points and power levels to build a glitch profile and see what
types of behavior can be controlled. (When instructions are
skipped via power glitching, it’s often because the opcode
instruction has become corrupted and done something other
than the intended instruction or because one of the registers
has become corrupted.)

NOTE

Some microcontrollers aren’t vulnerable at all to power
glitching, so test with your target chipset before trying it on
a vehicle.

Power glitching can also affect memory reads and writes.
Depending on which instruction is running during the power
fault, you can cause the controller to read the wrong data or
forget to write a value.

Invasive Fault Injection

Because invasive fault injection attacks are more time-
consuming and expensive than glitch attacks, we’ll examine
them only briefly here. However, if you need to do the job
and you have the resources, invasive fault injection is often
the best way. The catch is that it doesn’t preserve the target
and can even destroy it.

Invasive fault injection involves physically unpacking the
chip, typically with acid (nitric acid and acetone) and using
an electron microscope to image the chip. You can work on
just the top or bottom layer of the chip or map out each layer
and decipher the logic gates and internals. You can also use
microprobes and a microprobe station to inject the exact
signal you want into your target. By the same token, you
could use targeted lasers or even directed heat to cause
optical faults to slow down processes in that region. For
instance, if a move instruction is supposed to take two clock
cycles, you can slow the registry retrieval to make it late for
the next instruction.

Summary

In this chapter, you’ve learned several advanced techniques
for attacking embedded systems; these techniques will
become only more valuable as automotive security
improves. You learned how to identify chips and monitor
power usage to create a profile of good operations. We
tested whether password checks could be attacked by
monitoring the power output of bad characters in
passwords, ultimately to create a brute-forcing application
using power analysis to cut the password brute-force time
down to seconds. We also saw how clock and power
glitching can make instructions skip at key points in the
firmware’s execution, such as during validation security

checks or when setting JTAG security.

