
The Car Hacker's Handbook:
A Guide for the Penetration
Tester - Craig Smith (2016)
Chapter 12. ATTACKING WIRELESS
SYSTEMS WITH SDR

In this chapter, we’ll delve into embedded wireless systems,
beginning with embedded systems that transmit simple
wireless signals to the ECU. Embedded wireless systems can
be easy targets. They often rely on short-range signals as
their only security, and because they’re small devices with
specific functionalities, there are typically no checks from
the ECU to validate the data outside of the signal and the
CRC algorithm. Such systems are usually good stepping

stones for learning before looking at more advanced
systems, such as those with keyless entry, which we’ll look
at hacking in the latter part of the chapter.

We’ll look at the technology that unlocks and starts your
vehicle as we explore both the wireless side of keyless entry
systems and the encryption they use. In particular, we’ll
focus on the TPMS and wireless key systems. We’ll consider
possible hacks, including ways that the TPMS could be used
to track a vehicle, trigger events, overload the ECU, or spoof
the ECU to cause unusual behavior.

Wireless Systems and SDR

First, a quick primer on sending and receiving wireless
signals. To perform the type of research discussed in this
chapter, you’ll need an SDR, a programmable radio that sells
anywhere from $20, for example, RTL-SDR (http://www.rtl-
sdr.com/), to over $2,000, for example, a Universal Software
Radio Peripheral (USRP) device from Ettus Research
(http://www.ettus.com/). The HackRF One is a good and
very serviceable option from Great Scott Gadgets that will
cost you about $300, but you’ll most likely want two so you
can send and receive at the same time.

One significant difference between SDR devices that has a
direct effect on cost is the sample rate, or the number of
samples of audio carried per second. Unsurprisingly, the

larger your sample rate, the more bandwidth you can
simultaneously watch—but also the more expensive the SDR
and the faster the processor needs to be. For instance, the
RTL-SDR maxes out at around 3Mbps, the HackRF at
20Mbps, and the USRP at 100Mbps. As a point of reference,
20Mbps will let you sample the entire FM spectrum
simultaneously. SDR devices work well with the free GNU
Radio Companion (GRC) from GNURadio
(https://gnuradio.org/), which you can use to view, filter, and
demodulate encoded signals. You can use GNU Radio to
filter out desired signals, identify the type of modulation
being used (see the next section), and apply the right
demodulator to identify the bitstream. GNU Radio can help
you go from wireless signals directly to data you can
recognize and manipulate.

NOTE

See the Great Scott Gadgets tutorials
at http://greatscottgadgets.com/sdr/ for more on how to use
SDR devices with GNU Radio.

Signal Modulation

To apply the right demodulator, you first need to be able to
identify the type of modulation a signal is using. Signal
modulation is the way you represent binary data using a
wireless signal, and it comes into play when you need to be

able to tell the difference between a digital 1 and a digital 0.
There are two common types of digital signal modulation:
amplitude-shift keying (ASK) and frequency-shift keying
(FSK).

Amplitude-Shift Keying

When ASK modulation is used, the bits are designated by
the amplitude of the signal. Figure 12-1 shows a plot of the
signal being transmitted in carrier waves. A carrier wave is
the amplitude of the carrier, and when there’s no wave, that’s
the signal’s resting state. When the carrier line is high for a
specific duration, which registers as a wave, that’s a binary 1.
When the carrier line is at a resting state for a shorter
duration, that’s a binary 0.

Figure 12-1: ASK modulation

ASK modulation is also known as on-off keying (OOK), and it
typically uses a start-and-stop bit. Start-and-stop bits are
common ways to separate where a message starts and
where it stops. Accounting for start-and-stop bits, Figure 12-

1 could represent nine bits: 0-1-1-0-1-1-0-1-0.

Frequency-Shift Keying

Unlike ASK, FSK always has a carrier signal but that signal is
instead measured by how quickly it changes—its frequency
(see Figure 12-2).

Figure 12-2: FSK modulation

In FSK, a high-frequency signal is a 0, and a low-frequency
signal is a 1. When the carrier waves are close, that’s a 1, and
when they’re spaced farther apart, that’s a 0. The bits
in Figure 12-2 are probably 1-0-0-1-0-0-1-0-1.

Hacking with TPMS

The TPMS is a simple device that sits inside the tire and
sends data on tire-pressure readings and wheel rotation and
temperature, and warnings about certain conditions like low
sensor batteries to the ECU (see Figure 12-3). The data is
then displayed to the driver via gauges, digital displays, or

warning lights. In the fall of 2000, the United States enacted
the Transportation Recall Enhancement, Accountability, and
Documentation (TREAD) Act, requiring that all new vehicles
have a TPMS system installed in order to improve road
safety by alerting drivers to underinflated tires. Thanks to
TREAD, the TPMS has widespread adoption, making it a
prevalent attack target.

Figure 12-3: Two TPMS sensors

The TPMS device sits inside the wheel and transmits

wirelessly into the wheel well, allowing its signals to be
partially shielded by the body of the vehicle in order to
prevent too much leakage. Most TPMS systems use a radio
to communicate with the ECU. The signal frequency varies
between devices but typically runs at 315 MHz or 433 MHz
UHF and uses either ASK or FSK modulation. Some TPMS
systems use Bluetooth, which has its pros and cons from the
perspective of an attacker: Bluetooth has a greater default
range, but the Bluetooth protocol can also enable secure
communication, making it harder to intercept or connect to.
In this chapter, I’ll focus on TPMS systems that use radio
signals.

Eavesdropping with a Radio Receiver

Most public research on TPMS security is summarized in
“Security and Privacy Vulnerabilities of In-Car Wireless
Networks: A Tire Pressure Monitoring System Case Study”
from researchers at the University of South Carolina and
Rutgers University.1 The paper shows how the researchers
were able to eavesdrop on a TPMS system from 40 m away
using a relatively low-cost USRP receiver ($700 to $2,000)
to sniff its wireless signals. (As mentioned earlier, you could
use a different SDR.) Once the signals have been captured,
GNU Radio can be used to filter and demodulate them.

TPMS systems have very weak signals and, therefore, don’t
leak data too far from the vehicle. In order to overcome the

low leakage factor of a TPMS system, you could add a low-
noise amplifier (LNA) to your radio receiver to increase the
sniffing range, which should allow you to capture a TPMS
signal from the side of the road or from a vehicle traveling
alongside the target. You could also implement directional
antennas to boost your range.

TPMS sensors transmit only every 60 to 90 seconds, and
sensors usually aren’t required to send information until the
vehicle is traveling at 25 mph or higher. However, many
sensors transmit even when a car is idle, and some transmit
even when the car is off. When auditing a stationary vehicle
that’s powered off, be sure to send a wake-up signal to
trigger a response from the TPMS.

The best way to know how your target TPMS sensor works is
to listen for packets with the vehicle completely off. You
most likely won’t see any communication without a wake-up
signal, but some devices may transmit at slow intervals
anyhow. Next, turn the vehicle on and leave it in an idle state.
The ECU should prompt the tire to respond at the very least
during startup, but most likely it’ll poll every so often.

Once you see the TPMS signal, you’ll need to decode it in
order for its contents to make sense. Thankfully, researcher
Jared Boone has made that easy with a suite of tools
designed to capture and decode TPMS packets. You’ll find
the source code for his gr-tpms tool

at https://github.com/jboone/gr-tpms/ and the source code
for his tpms tool at https://github.com/jboone/tpms/. After
using these tools to capture and decode TPMS packets, you
can analyze the captured data to determine which bits
represent the system’s unique ID as well as any other fields.

TPMS Packets

TPMS packets will typically contain the same information,
with some differences between models. Figure 12-4 shows
an example of a TPMS packet.

Figure 12-4: An example TPMS packet

The SensorID is a 28- or 32-bit number that’s unique to
each sensor and registered with the ECU. If your only goal is
to fingerprint a target for tracking or triggering an event, the
SensorID is probably the only part of the packet you’ll care
about. The Pressure and Temperature fields contain
readings from the TPMS device. The Flags field can contain
extra meta-data, such as a warning about a low battery in a
sensor.

When determining packet encoding, check whether
Manchester encoding was used. Manchester encoding is
commonly used in near-field devices, like TPMS systems. If

you know what chipset is being used, the data sheet should
tell you whether it supports Manchester encoding. If it does,
you’ll first need to decode the packet before parsing its
contents. Jared Boone’s tools can assist with this task.

Activating a Signal

As mentioned, sensors generally transmit around once a
minute, but rather than waiting 60 seconds for the sensor to
send a packet, an attacker can send a 125 kHz activation
signal to the TPMS device with an SDR to elicit a response.
Your interception of this response will need to be timed
carefully, though, because there’s a delay between when you
send an activation signal and when the response is
transmitted. For example, if you’re receiving from the side of
the road and the vehicle is traveling too fast past your
sensor, you could easily miss the response.

The activation signal is designed primarily for TPMS test
equipment, so it may be tricky to use it on a moving vehicle.
If the target vehicle sends packets when it’s stationary or off,
your task will be much easier.

TPMS sensors don’t use input validation. The ECU will check
to make sure that it recognizes only the SignalID, so the only
attribute you, as an attacker, need to know or match is the
ID.

Tracking a Vehicle

It’s possible to use TPMS to track vehicles by placing
receivers in the areas you wish to track. For instance, to
track vehicles entering a parking garage, you’d simply need
to place some receivers by the entrance and exit areas.
However, to track vehicles around a city or along a route,
you’d need to strategically place sensors along the area to
be tracked. Because the sensors would have limited range,
you’d have to place them around intersections or freeway
on- or off-ramps.

As mentioned, TPMS sensors broadcast their unique ID
every 60 to 90 seconds, so you’ll miss a lot of signals if
you’re recording IDs on a high-speed road. To improve your
chances of capturing signals, send the activation signal to
wake up the device as it passes. The sensor’s limited
distance can also affect your ability to gather IDs, but you
could add an LNA to your tracking system to increase the
range.

Event Triggering

Besides simply tracking a vehicle, TPMS can be used to
trigger an event, from something simple like opening a
garage door when the car approaches to something more
sinister. For instance, a malicious actor could plant
a roadside explosive and set it to detonate when it receives a

known ID from the TPMS sensor. Because you have four
tires, the attacker would have reasonable assurance that
they have the right vehicle if they receive a signal for each
tire. Essentially, using all four tires would allow you to create
a basic but accurate sensor fingerprint for a target vehicle.

Sending Forged Packets

Once you have access to the TPMS signal, you can send
your own forged packets by setting up GNU Radio as a
transmitter instead of as a receiver. By forging packets, you
can not only spoof dangerous PSI and temperature readings
but also cause other engine lights to trigger. And because
sensors still respond to activation packets while the vehicle
is off, it’s possible to drain a vehicle’s battery by flooding the
sensor with activation requests.

In the paper “Security and Privacy Vulnerabilities of In-Car
Wireless Networks” referenced previously, the researchers
flooded the sensors with spoofed packets, eventually
managing to completely shut down the ECU while the
vehicle was in use. Shutting down the ECU either halts the
vehicle or forces it into “limp mode.”

WARNING

Shutting down the ECU while a vehicle is traveling at high
speed could be extremely dangerous. Even though playing

with TPMS may seem innocuous, be sure to take standard
safety precautions when assessing any vehicle.

Attacking Key Fobs and Immobilizers

Anyone who has driven a modern vehicle is likely familiar
with the key fob and the remote unlock. In 1982, radio-
frequency identification (RFID) was first introduced into
remote keyless vehicle entry systems via the Renault Fuego,
and it’s been in wide use since 1995. Earlier systems used
infrared, so when working with one of these earlier vehicles,
you’ll need to assess the key fob by recording the infrared
light source (which is not covered in this chapter). Today’s
systems use a key fob to send an RFID signal to a vehicle to
remotely unlock the doors or even start the vehicle. The key
fob uses a transponder operating at 125 kHz to
communicate with an immobilizer in the vehicle, which
prevents the vehicle from starting unless it receives the
correct code or other token. The reason to use a low-
frequency RFID signal is to allow the key system to work
even if the key fob runs out of battery power.

We’ll examine using SDR devices to analyze wireless
communications set by the wireless key fobs used to unlock
and start vehicles. While older key fobs use a simple fixed
code to start the vehicle, most modern systems rely on a
rolling code or a challenge–response system that prevents
simply recording and playing back a fixed code by

challenging the key fob to perform a task, like completing a
calculation and returning the correct answer. These
calculations require both a bit more power and the use of a
battery, which also makes it possible for the key fob to
communicate on a higher frequency from a greater distance.

Remote keyless entry systems typically run at 315 MHz in
North America and 433.92 MHz in Europe and Asia. You can
use GNU Radio to watch the signal sent by a key fob or use a
tool like the Gqrx SDR (http://gqrx.dk/) for a nice real-time
view of the entire bandwidth brought in from your SDR
device. Using Gqrx with a high sample rate (bandwidth)
allows you to identify the frequency of an RFID signal as it’s
sent from a key fob to a vehicle. For example, Figure 12-
5 shows Gqrx set to listen at 315 MHz (the center, vertical
line) and at offset –1,192.350 kHz, as it monitors a key fob
unlock request for a Honda. Gqrx has identified two peaks in
the signal that are likely to be the unlock requests.

Figure 12-5: Gqrx capture of a key fob unlock request

Key Fob Hacks

There are plenty of ways to hack key fob systems, and I’ll
give examples of a few methods an attacker might use in the
following sections.

Jamming the Key Fob Signal

One way to attack a key fob signal is to jam it by passing
garbage data within the RFID receiver’s passband, the area
the receiver is listening to for a valid signal. The width of the
passband window includes some extra space where you can
add noise to prevent the receiver from changing the rolling

code while still allowing the attacker to view the correct key
sequence (see Figure 12-6).

While holding onto that valid unlock request in memory, the
attacker waits for another request to be sent and records
that request, too. The attacker can then replay the first valid
packet to the vehicle, causing it to lock or unlock the car,
depending on the signal sent by the key fob. When the car
owner leaves the vehicle, the attacker has the last valid key
stored and can replay it to open the vehicle doors or start
the vehicle. This attack was demonstrated by Samy Kamkar
at DEF CON 23 on both vehicles and garage door openers.2

Figure 12-6: Jamming the passband filter to preserve the

key exchange

Pulling the Response Codes from Memory

Sometimes it’s possible to find the response code still in the
immobilizer’s memory, even a few minutes after the key fob
has stopped sending signals. This provides a window of
opportunity to start the car not by capturing signals live from
a key fob but rather by pulling the signal from the
immobilizer’s memory.

If an area of memory can be identified to contain this
information, then the attacker needs to either quickly get
access to the vehicle or have a device on the vehicle that
can respond to record this information.

Brute-Forcing a Key Code

Some response codes can be accessed by brute force,
though the feasibility of a brute-force attack depends on the
key code length and algorithm. (We’ll discuss the
cryptography behind these key systems in “Immobilizer
Cryptography” on page 220.) In order for a brute-force
attack to succeed, the attacker needs to build custom
software to brute-force the key using an SDR, a custom
hardware component, or—better yet—a combination of the
two. For instance, if the key fob detected brute-forcing
attacks, you may want to have some custom hardware reset

the key fob on lockout by bouncing the power.

Forward-Prediction Attacks

If an attacker is able to observe challenge–response
exchanges that occur when the key fob sends a signal to the
vehicle and the vehicle’s transponder responds, the attacker
can perform a forward-prediction attack. In such an attack,
the attacker observes multiple challenges and from those,
predicts what the next challenge request will be. If the
transponder’s pseudorandom number generator (PRNG) is
weak, this attack may well succeed. To greatly simplify this
example, if the PRNG was based on when the key fob first
received power, an attacker could seed their own random
number generator with a matching start time. Once the
attacker was synced to the target, the attacker could predict
all future codes.

Dictionary Attacks

Similarly, if an attacker can record numerous valid
challenge–response exchanges between the key fob and the
transponder, they can store them in a dictionary and then
use the collected key pairs to repeatedly request challenges
from the transponder until one challenge matches a
response in the dictionary. This tricky attack is possible only
when the keyless entry system doesn’t use sender
verification to make sure that responses are valid. The

attacker would also need to be able to continuously request
authentication from the transponder.

In order to perform a dictionary attack, the attacker would
need to build a system to trigger the key fob request and
record the exchange with an SDR. An Arduino wired to the
button press of the researcher’s valid key fob would suffice.
Assuming the authentication takes place over CAN, it’s also
possible to grab the key fob ID over ultra-high frequency and
attempt to gather the key stream by replaying and recording
the communication over the CAN bus, as discussed in
“Reversing CAN Bus Communications with can-utils and
Wireshark” on page 68. Using custom tools, this would be
possible to repeat over any bus network. For more
information on this type of attack, see the paper “Broken
Keys to the Kingdom”.3

Dumping the Transponder Memory

It’s often possible to dump the memory of the transponder to
get the secret key. In Chapter 8, we examined how to use
debugger pins, such as JTAG, as well as side-channel
analysis attacks to dump memory from the transponder.

Reversing the CAN Bus

To gain access to a vehicle, an attacker can simulate the lock
button press using the CAN bus reversing methods

discussed in Chapter 5. If the attacker has access to the
CAN bus, they can replay lock and unlock packets to control
and occasionally even start the vehicle. Sometimes CAN bus
wires are even accessible from outside the vehicle; for
instance, some vehicles have CAN bus running to the tail
lights. An attacker could pop out a tail light and tap into the
CAN bus network in order to unlock the vehicle.

Key Programmers and Transponder Duplication
Machines

Transponder duplication machines are often used to steal
vehicles. These machines, the same as those used by a
mechanic or dealership to replace lost keys, can be
purchased online for anywhere from $200 to $1,000.
Attackers acquire the transponder signal from their target
vehicle and use it to create a clone of the key, by either
having a valid key nearby or using one of the attacks
discussed earlier. For example, the attacker—possibly a valet
or a parking garage attendant—might jam the door lock
signal and then sneak into the vehicle and attach a custom
dongle to the OBD-II connector. The dongle would acquire
the key fob communication and possibly even include a GPS
broadcast to allow the attacker to locate the vehicle later.
The attacker would later return to the vehicle and use the
dongle to unlock and start the car.

Attacking a PKES System

Passive keyless entry and start (PKES) systems are very
similar to traditional transponder immobilizer systems,
except that the key fob can remain in the owner’s pocket and
no button needs to be pressed. When a PKES system is
implemented, antennas in the vehicle read RFID signals from
the key fob when it’s in range. PKES key fobs use a low-
frequency (LF) RFID chip and an ultra-high-frequency (UHF)
signal to unlock or start the vehicle. The vehicle ignores UHF
signals from the key fob if the LF RFID signal isn’t seen,
meaning that the key isn’t nearby. The RFID on the key fob
receives a crypto challenge from the vehicle, and the
microcontroller on the key fob solves this challenge and
responds over the UHF signal. Some vehicles use RFID
sensors inside the vehicle to triangulate the location of the
key fob to ensure the key fob is inside the vehicle. If the
battery dies in a PKES key fob, there’s typically a hidden
physical key in the fob that will unlock the door, though the
immobilizer will still use the RFID to verify that the key is
present before starting the vehicle.

There are typically two types of possible attacks on a PKES
system: a relay attack and an amplified relay attack. In
a relay attack, an attacker places a device next to the car
and another next to the owner or holder of the key fob (the
target). The device relays the signals between the target’s
key fob and the vehicle, enabling the attacker to start the
car.

This relay tunnel can be set up to communicate over any
channel that’s fast and has a larger range than the normal
key fob. For instance, a device placed near the target could
set up a cellular tunnel to a laptop near the vehicle. Packets
would go from the target’s key fob into the device to be
transmitted over cellular and replayed by the laptop. For
more information, see “Relay Attacks on Passive Keyless
Entry and Start Systems in Modern Cars.”4

An amplified relay attack uses the same basic principles as a
relay attack but with only a single amplifier. The attacker
stands by the target vehicle and amplifies the signal, and if
the target is nearby with the key fob, the vehicle will unlock.
This is an unsophisticated attack that simply increases the
range of the vehicle’s sensors. It’s been seen in the wild,
primarily in residential neighborhoods, prompting a series of
news articles advising residents to put their keys in their
refrigerator or wrap them in aluminum foil when they’re at
home to prevent them from sending a readable signal.
Obviously, treating your keys like lunch is silly, but until auto
manufacturers provide an alternative solution, I’m afraid
you’re stuck with homemade Faraday cages.

Immobilizer Cryptography

Like most systems in a vehicle, immobilizer systems are
usually created using a combination of cheap components.
As a result, manufacturers have become creative with things

like cryptography, which has introduced numerous
weaknesses into these systems. For example, some
immobilizer vendors make the common mistake of creating
their own crypto and hiding it behind a trade secret clause
designed to protect it instead of validating it with public
scrutiny. Known as security through obscurity, this method
is almost always doomed to fail, and it’s why we don’t see a
standard cryptography implementation to handle the key
exchange between the key fob and the immobilizer.

The immobilizer–key exchange uses a challenge–response
system and PRNGs. The PRNG is equally important as the
crypto algorithm, as a poor PRNG can lead to predictable
results regardless of how good your crypto algorithm is.

The typical key exchange implementation follows this
general sequence:

1. The immobilizer sends a challenge to the key using a
PRNG.

2. The key encrypts the challenge using a PRNG and
returns it to the immobilizer.

3. The immobilizer sends a second random number
challenge.

4. The key encrypts both challenges and returns them to
the immobilizer.

These algorithms are typically from the pseudorandom
function (PRF) family, which generate what only look like
random output given random input. There’s a strong reliance
on generated randomness in order for these systems to work
properly. Some of these systems have already been cracked
and the cracking methods widely disseminated, but some
still remain unbroken. Unfortunately, because manufacturers
don’t have systems in place to update their key fobs’
firmware, you’ll see all of these algorithms in use if you look
long and hard enough.

The following are some of the known proprietary algorithms
still in use and their current crack status—that is, whether
they’ve been broken or not. Whenever possible, I identify
which vehicles you may see the algorithm used in.

NOTE

This section is designed to assist in your research. Each area
should give you basic information on the key system you’re
looking at and details that should help you to jump-start
your crypto research. This section isn’t meant to explain
cryptography, and I won’t delve into the intricacies of the
mathematics behind each algorithm.

EM Micro Megamos

Introduced 1997

Manufacturer Volkswagen/Thales

Key Length 96 bits

Algorithm Proprietary

Vehicles Porsche, Audi, Bentley, Lamborghini

Crack Status Broken but the attack methods have been
censored by lawsuit

The Megamos cryptographic system has a particularly
interesting history. Megamos “optimized” its key handshake
by requiring only one round of challenge and response and
eliminating the second round, as outlined earlier. While an
attacker attempting to crack a challenge–response key
would normally need access to the target key, they could
crack Megamos without a key present because the
Megamos challenge response is never actually acted on by
the vehicle’s transponder. This flaw basically skips the key
challenge portion and provides only an encrypted key.

The Megamos memory is a 160-bit EEPROM, organized into
10 words, as shown in Table 12-1. Crypt Key is the secret key
storage, ID is the 32-bit identifier, LB 0 and LB 1 are the lock
bits, and UM is the 30 bits of user memory.

Table 12-1: Layout of the Megamos Memory Space

Bit 15 Bit 0 Bit 15 Bit 0

Crypt Key 95 Crypt Key 80 Crypt Key 15 Crypt Key 0

Crypt Key 79 Crypt Key 64 ID 31 ID 16

Crypt Key 63 Crypt Key 48 ID 15 ID 0

Crypt Key 47 Crypt Key 32 LB1, LB0, UM 29 UM 16

Crypt Key 31 Crypt Key 16 UM 15 UM 0

This algorithm was cracked publicly in 2013 when Flavio D.
Garcia, a security researcher at the University of
Birmingham, published a paper called “Dismantling
Megamos Crypto: Wirelessly Lockpicking a Vehicle
Immobilizer”.5 Garcia and two fellow researchers from
Radboud University Nijmegen, Barış Ege and Roel Verdult,
notified the chipmakers, Volkswagen and Thales, nine
months prior to the scheduled publication of their paper.
Volkswagen and Thales reacted by suing the researchers for
having identified the vulnerabilities, and the researchers lost
the court case because the algorithm was leaked online. The
leaked algorithm was used in pirated software—the Tango
Programmer from VAG-info.com—for adding new keys. The
researchers acquired this software and reversed the
internals of the software to identify the algorithm.

In their paper, the researchers analyzed the algorithm and
reported on the vulnerabilities they found, though the actual
exploit was apparently not trivial and there were much easier
ways to steal a car with a Megamos system. Nevertheless,

the research was placed under a gag order, and the findings
weren’t made public. Unfortunately, the problem with
Megamos still exists, and it’s still insecure—the gag order
simply prevents vehicle owners from determining their risk
because the research isn’t publicly available. This is a prime
example of how the auto industry should not respond to
security research.

You can find a transcript of the court decision
here: http://www.bailii.org/ew/cases/EWHC/Ch/2013/1832.h
tml. In order not to leak any details, I’ll simply quote the court
case:

In detail the way this works is as follows: both the car
computer and the transponder know a secret number. The
number is unique to that car. It is called the “secret key”.
Both the car computer and the transponder also know a
secret algorithm. That is a complex mathematical formula.
Given two numbers it will produce a third number. The
algorithm is the same for all cars which use the Megamos
Crypto chip. Carrying out that calculation is what the
Megamos Crypto chip does.

When the process starts the car generates a random
number. It is sent to the transponder. Now both computers
perform the complex mathematical operation using two
numbers they both should know, the random number and
the secret key. They each produce a third number. The

number is split into two parts called F and G. Both
computers now know F and G. The car sends its F to the
transponder. The transponder can check that the car has
correctly calculated F. That proves to the transponder that
the car knows both the secret key and the Megamos Crypto
algorithm. The transponder can now be satisfied that the car
is genuinely the car it is supposed to be. If the transponder is
happy, the transponder sends G to the car. The car checks
that G is correct. If it is correct then the car is happy that the
transponder also knows the secret key and the Megamos
Crypto algorithm. Thus the car can be satisfied that the
transponder is genuine. So both devices have confirmed the
identity of the other without actually revealing the secret key
or the secret algorithm. The car can safely start. The
verification of identity in this process depends on the shared
secret knowledge. For the process to be secure, both pieces
of information need to remain secret—the key and the
algorithm.6

In reality, any robust crypto algorithm can be known. In fact,
as any cryptographer will tell you, if knowing the math
behind an algorithm jeopardizes the security of that
algorithm, the algorithm is flawed.

The court case determined that the attacks were hard to
mitigate and would require a complete redesign. The
researchers offered other lightweight algorithms that could

be used in the redesigned key systems, but because the
research was silenced, no key systems were updated. The
Megamos algorithm is still found in key programmers like
Volkswagen’s Tango Programmer, among others.

EM4237

Introduced 2006

Manufacturer EM Microelectronic

Key Length 128 bits

Algorithm Proprietary

Vehicles Unknown

Crack Status No known published cracks

EM4237 is described by the manufacturer as a generic,
long-range, passive, contactless tag system that uses
transponders. This is similar to a beefed-up proximity card
used for building access but with a range of 1 to 1.5 m.
Normally, EM4237 requires a high-security, 128-bit
password, but it can run in a low-security mode that requires
only a 32-bit password if, for example, the key fob is low on
battery, as it takes less energy to compute a 32-bit key than
a 128-bit key. The system’s low-security mode key is located
in the same memory section of the transponder as the high-

security mode key, and the system can be toggled between
high and low security without having to reenter the
password/key. The EM4237 transponder claims to be
compliant with vicinity card standards (ISO/IEC 15693),
which offers full encryption of the RF channel (13.56 MHz).
When auditing EM4237, ensure that implementation on your
target matches the specification.

Hitag 1

Introduced Unknown

Manufacturer Philips/NXP

Key Length 32 bits

Algorithm Proprietary

Vehicles Unknown

Crack Status Broken

Hitag 1 relies on a 32-bit secret key and is susceptible to a
brute-force attack that can take only a few minutes. You
won’t find Hitag 1 used in many of today’s vehicles, but Hitag
1 transponders are still used in other RFID products, such as
smart keychains and proximity cards.

Hitag 2

Introduced 1997

Manufacturer Philips/NXP

Key Length 48 bits

Algorithm Proprietary

Vehicles Audi, Bentley, BMW, Chrysler, Land Rover,
Mercedes, Porsche, Saab, Volkswagen, and many more

Crack Status Broken

Hitag 2 is one of the most widely implemented (and broken)
algorithms in vehicles produced around the world. The
algorithm was cracked because its stream cipher, shown
in Figure 12-7, is never fed back into the original state,
making the key discoverable.

Figure 12-7: Hitag 2 cipher

Hitag 2 keys can be cracked in under a minute by using a
type of smart brute-forcing that intelligently picks the next
guess rather than trying every possibility. The Hitag 2
system can be brute-forced so quickly because it doesn’t
even use its full bit length, and when the transponders are
introduced into a system, they don’t produce true random
numbers during initialization. Both Hitag 1 and Hitag 2 are
also vulnerable to dictionary attacks.

You’ll find numerous papers online that discuss a multitude
of weaknesses in Hitag 2, such as “Gone in 360 Seconds:
Hijacking with Hitag2”.7

Hitag AES

Introduced 2007

Manufacturer Philips/NXP

Key Length 128 bits

Algorithm AES

Vehicles Audi, Bentley, BMW, Porsche

Crack Status No known published cracks

This newer cipher relies on the proven AES algorithm, which
means that any weaknesses in the crypto will result from a
manufacturer’s implementation. As I write this, there are no

known cracks for Hitag AES.

DST-40

Introduced 2000

Manufacturer Texas Instruments

Key Length 40 bits

Algorithm Proprietary (unbalanced Feistel cipher)

Vehicles Ford, Lincoln, Mercury, Nissan, Toyota

Crack Status Broken

The algorithm used by the digital signal transponder DST-40
was also used in the Exxon-Mobil Speedpass payment
system. The DST-40, a 200-round unbalanced Feistel
cipher, was reverse engineered by researchers at Johns
Hopkins University who created a series of FPGAs to brute-
force the key, allowing them to clone the transponders.
(FPGAs make it possible to create hardware that’s custom
designed to crack algorithms, which makes brute-forcing
much more feasible.) Because an FPGA is specialized and
can run with parallel inputs, it can often process things much
faster than a general-purpose computer.

The attack on DST-40 takes advantage of the transponder’s
weak 40-bit key and requires no more than one hour to

complete. To perform the attack, the attacker must get two
challenge–response pairs from a valid transponder—a
relatively easy task, since DST-40 responds to as many as
eight queries per second. (See “Security Analysis of
Cryptographically-Enabled RFID Device” for more details on
this crack.8)

DST-80

Introduced 2008

Manufacturer Texas Instruments

Key Length 80 bits

Algorithm Proprietary (unbalanced Feistel cipher)

Crack Status No known published cracks

When DST-40 was cracked, Texas Instruments responded
by doubling the key length to produce DST-80. DST-80 isn’t
as widely deployed as DST-40. Some sources claim that
DST-80 is still susceptible to attack, though, as of this
writing, no attacks have been published.

Keeloq

Introduced Mid-1980s

Manufacturer Nanoteq

Key Length 64 bits

Algorithm Proprietary (NLFSR)

Vehicles Chrysler, Daewoo, Fiat, General Motor, Honda,
Jaguar, Toyota, Volkswagen, Volvo

Crack Status Broken

Keeloq, shown in Figure 12-8, is a very old algorithm, and
there have been many published attacks on its encryption.
Keeloq can use both a rolling code and a challenge
response, and it uses a block cipher based on nonlinear
feedback shift register (NLFSR). The manufacturer
implementing Keeloq receives a key, which is stored in all
receivers. Receivers learn transponder keys by receiving
their IDs over a bus line programmed by the auto
manufacturer.

The most effective cryptographic attack in Keeloq uses both
a slide and a meet-in-the-middle attack. The attack targets
Keeloq’s challenge–response mode and requires the
collection of 216 known plaintext messages from a
transponder—the recording of which can take just over one
hour. The attack typically results only in the ability to clone
the transponder, but if the manufacturer’s key derivation is
weak, it may be possible for the attacker to deduce the key
used on their transponders. However, attacking the crypto

has become unnecessary because newer dedicated FPGA
clusters make it possible to simply brute-force the key.

Figure 12-8: Keeloq algorithm

Keeloq is also susceptible to a power-analysis attack. A
power-analysis attack can be used to extract the
manufacturer’s key used on the transponders with only two
transponder messages. If successful, such an attack
typically results only in the ability to clone a transponder in a
few minutes by monitoring the power traces on the
transponder. Power analysis can also be used to get the
manufacturer key, though such an attack could take several
hours to perform. Once the attacker has the master key, they
can clone any transponder. Finally, because Keeloq takes
varying clock cycles when using its lookup table, it’s also
susceptible to timing attacks. (For more on power-analysis
and timing attacks, see Chapter 8.)

Open Source Immobilizer Protocol Stack

Introduced 2011

Manufacturer Atmel

Key Length 128 bits

Algorithm AES

Crack Status No known published cracks

In 2011, Atmel released the Open Source Immobilizer
Protocol Stack under an open source license, making it
freely available to the public and encouraging public scrutiny
of the protocol design. As I write this, there are no known
attacks on this protocol. You can download the protocol from
the Atmel site: http://www.atmel.com/.

Physical Attacks on the Immobilizer System

So far, we’ve looked at wireless attacks and direct
cryptography attacks against the transponders. Next, we’ll
look at physical modification and attacks to the vehicle itself.
Physical attacks typically take longer to perform and aren’t
meant to be stealthy.

Attacking Immobilizer Chips

One way to attack an immobilization system is to physically

attack the immobilizer chip. In fact, it’s possible to
completely remove the immobilizer chip (typically from a
vehicle’s ECU) and still operate a vehicle, though perhaps
not quite normally. At the very least, this removal would
create a DTC and turn on the MIL, as discussed in
“Diagnostic Trouble Codes” on page 52. In order to
physically remove immobilizer-based security, you can
purchase or build an immobilizer bypass chip and then
solder it where the original immobilizer chip was to keep the
rest of the ECU happy. These chips, sometimes referred to
as immo emulators, typically cost $20 to $30. You’d still
need to have a key cut for the vehicle, but having bypassed
any challenge–response security entirely, the key would
simply unlock and start the vehicle.

Brute-Forcing Keypad Entry

Now, for a change of pace: Here’s one method for brute-
forcing a keypad lock on a vehicle; this particular method
was discovered by Peter Boothe (available
at http://www.nostarch.com/carhacking/). If the vehicle has
a keypad under the door handle with buttons labeled 1/2,
3/4, 5/6, 7/8, 9/0, you can manually enter the following
sequence in about 20 minutes to unlock the car door. You
don’t have to enter the entire sequence—you can stop
entering the code whenever the doors unlock. For
convenience, each button is labeled 1, 3, 5, 7, and 9,

respectively.

9 9 9 9 1 1 1 1 1 3 1 1 1 1 5 1 1 1 1 7 1 1 1 1 9 1 1 1 3 3 1 1 1 3 5 1
1 1 3
7 1 1 1 3 9 1 1 1 5 3 1 1 1 5 5 1 1 1 5 7 1 1 1 5 9 1 1 1 7 3 1 1 1 7 5
1 1 1
7 7 1 1 1 7 9 1 1 1 9 3 1 1 1 9 5 1 1 1 9 7 1 1 1 9 9 1 1 3 1 3 1 1 3 1
5 1 1
3 1 7 1 1 3 1 9 1 1 3 3 3 1 1 3 3 5 1 1 3 3 7 1 1 3 3 9 1 1 3 5 3 1 1
3 5 5 1
1 3 5 7 1 1 3 5 9 1 1 3 7 3 1 1 3 7 5 1 1 3 7 7 1 1 3 7 9 1 1 3 9 3 1
1 3 9 5
1 1 3 9 7 1 1 3 9 9 1 1 5 1 3 1 1 5 1 5 1 1 5 1 7 1 1 5 1 9 1 1 5 3 3
1 1 5 3
5 1 1 5 3 7 1 1 5 3 9 1 1 5 5 3 1 1 5 5 5 1 1 5 5 7 1 1 5 5 9 1 1 5
7 3 1 1 5
7 5 1 1 5 7 7 1 1 5 7 9 1 1 5 9 3 1 1 5 9 5 1 1 5 9 7 1 1 5 9 9 1 1 7
1 3 1 1
7 1 5 1 1 7 1 7 1 1 7 1 9 1 1 7 3 3 1 1 7 3 5 1 1 7 3 7 1 1 7 3 9 1 1
7 5 3 1
1 7 5 5 1 1 7 5 7 1 1 7 5 9 1 1 7 7 3 1 1 7 7 5 1 1 7 7 7 1 1 7 7 9 1
1 7 9 3
1 1 7 9 5 1 1 7 9 7 1 1 7 9 9 1 1 9 1 3 1 1 9 1 5 1 1 9 1 7 1 1 9 1 9
1 1 9 3
3 1 1 9 3 5 1 1 9 3 7 1 1 9 3 9 1 1 9 5 3 1 1 9 5 5 1 1 9 5 7 1 1 9
5 9 1 1 9
7 3 1 1 9 7 5 1 1 9 7 7 1 1 9 7 9 1 1 9 9 3 1 1 9 9 5 1 1 9 9 7 1 1

9 9 9 1 3
1 3 3 1 3 1 3 5 1 3 1 3 7 1 3 1 3 9 1 3 1 5 3 1 3 1 5 5 1 3 1 5 7 1
3 1 5 9 1
3 1 7 3 1 3 1 7 5 1 3 1 7 7 1 3 1 7 9 1 3 1 9 3 1 3 1 9 5 1 3 1 9 7 1
3 1 9 9
1 3 3 1 5 1 3 3 1 7 1 3 3 1 9 1 3 3 3 3 1 3 3 3 5 1 3 3 3 7 1 3 3 3
9 1 3 3 5
3 1 3 3 5 5 1 3 3 5 7 1 3 3 5 9 1 3 3 7 3 1 3 3 7 5 1 3 3 7 7 1 3
3 7 9 1 3 3
9 3 1 3 3 9 5 1 3 3 9 7 1 3 3 9 9 1 3 5 1 5 1 3 5 1 7 1 3 5 1 9 1 3
5 3 3 1 3
5 3 5 1 3 5 3 7 1 3 5 3 9 1 3 5 5 3 1 3 5 5 5 1 3 5 5 7 1 3 5 5 9
1 3 5 7 3 1
3 5 7 5 1 3 5 7 7 1 3 5 7 9 1 3 5 9 3 1 3 5 9 5 1 3 5 9 7 1 3 5 9
9 1 3 7 1 5
1 3 7 1 7 1 3 7 1 9 1 3 7 3 3 1 3 7 3 5 1 3 7 3 7 1 3 7 3 9 1 3 7 5
3 1 3 7 5
5 1 3 7 5 7 1 3 7 5 9 1 3 7 7 3 1 3 7 7 5 1 3 7 7 7 1 3 7 7 9 1 3 7
9 3 1 3 7
9 5 1 3 7 9 7 1 3 7 9 9 1 3 9 1 5 1 3 9 1 7 1 3 9 1 9 1 3 9 3 3 1 3
9 3 5 1 3
9 3 7 1 3 9 3 9 1 3 9 5 3 1 3 9 5 5 1 3 9 5 7 1 3 9 5 9 1 3 9 7 3
1 3 9 7 5 1
3 9 7 7 1 3 9 7 9 1 3 9 9 3 1 3 9 9 5 1 3 9 9 7 1 3 9 9 9 1 5 1 5
3 1 5 1 5 5
1 5 1 5 7 1 5 1 5 9 1 5 1 7 3 1 5 1 7 5 1 5 1 7 7 1 5 1 7 9 1 5 1 9 3
1 5 1 9

5 1 5 1 9 7 1 5 1 9 9 1 5 3 1 7 1 5 3 1 9 1 5 3 3 3 1 5 3 3 5 1 5 3
3 7 1 5 3
3 9 1 5 3 5 3 1 5 3 5 5 1 5 3 5 7 1 5 3 5 9 1 5 3 7 3 1 5 3 7 5 1
5 3 7 7 1 5
3 7 9 1 5 3 9 3 1 5 3 9 5 1 5 3 9 7 1 5 3 9 9 1 5 5 1 7 1 5 5 1 9
1 5 5 3 3 1
5 5 3 5 1 5 5 3 7 1 5 5 3 9 1 5 5 5 3 1 5 5 5 5 1 5 5 5 7 1 5 5 5
9 1 5 5 7 3
1 5 5 7 5 1 5 5 7 7 1 5 5 7 9 1 5 5 9 3 1 5 5 9 5 1 5 5 9 7 1 5 5
9 9 1 5 7 1
7 1 5 7 1 9 1 5 7 3 3 1 5 7 3 5 1 5 7 3 7 1 5 7 3 9 1 5 7 5 3 1 5 7
5 5 1 5 7
5 7 1 5 7 5 9 1 5 7 7 3 1 5 7 7 5 1 5 7 7 7 1 5 7 7 9 1 5 7 9 3 1 5
7 9 5 1 5
7 9 7 1 5 7 9 9 1 5 9 1 7 1 5 9 1 9 1 5 9 3 3 1 5 9 3 5 1 5 9 3 7 1
5 9 3 9 1
5 9 5 3 1 5 9 5 5 1 5 9 5 7 1 5 9 5 9 1 5 9 7 3 1 5 9 7 5 1 5 9 7
7 1 5 9 7 9
1 5 9 9 3 1 5 9 9 5 1 5 9 9 7 1 5 9 9 9 1 7 1 7 3 1 7 1 7 5 1 7 1 7
7 1 7 1 7
9 1 7 1 9 3 1 7 1 9 5 1 7 1 9 7 1 7 1 9 9 1 7 3 1 9 1 7 3 3 3 1 7 3
3 5 1 7 3
3 7 1 7 3 3 9 1 7 3 5 3 1 7 3 5 5 1 7 3 5 7 1 7 3 5 9 1 7 3 7 3 1 7
3 7 5 1 7
3 7 7 1 7 3 7 9 1 7 3 9 3 1 7 3 9 5 1 7 3 9 7 1 7 3 9 9 1 7 5 1 9 1
7 5 3 3 1
7 5 3 5 1 7 5 3 7 1 7 5 3 9 1 7 5 5 3 1 7 5 5 5 1 7 5 5 7 1 7 5 5

9 1 7 5 7 3
1 7 5 7 5 1 7 5 7 7 1 7 5 7 9 1 7 5 9 3 1 7 5 9 5 1 7 5 9 7 1 7 5 9
9 1 7 7 1
9 1 7 7 3 3 1 7 7 3 5 1 7 7 3 7 1 7 7 3 9 1 7 7 5 3 1 7 7 5 5 1 7 7
5 7 1 7 7
5 9 1 7 7 7 3 1 7 7 7 5 1 7 7 7 7 1 7 7 7 9 1 7 7 9 3 1 7 7 9 5 1 7
7 9 7 1 7
7 9 9 1 7 9 1 9 1 7 9 3 3 1 7 9 3 5 1 7 9 3 7 1 7 9 3 9 1 7 9 5 3
1 7 9 5 5 1
7 9 5 7 1 7 9 5 9 1 7 9 7 3 1 7 9 7 5 1 7 9 7 7 1 7 9 7 9 1 7 9 9
3 1 7 9 9 5
1 7 9 9 7 1 7 9 9 9 1 9 1 9 3 1 9 1 9 5 1 9 1 9 7 1 9 1 9 9 1 9 3 3
3 1 9 3 3
5 1 9 3 3 7 1 9 3 3 9 1 9 3 5 3 1 9 3 5 5 1 9 3 5 7 1 9 3 5 9 1 9
3 7 3 1 9 3
7 5 1 9 3 7 7 1 9 3 7 9 1 9 3 9 3 1 9 3 9 5 1 9 3 9 7 1 9 3 9 9 1
9 5 3 3 1 9
5 3 5 1 9 5 3 7 1 9 5 3 9 1 9 5 5 3 1 9 5 5 5 1 9 5 5 7 1 9 5 5 9
1 9 5 7 3 1
9 5 7 5 1 9 5 7 7 1 9 5 7 9 1 9 5 9 3 1 9 5 9 5 1 9 5 9 7 1 9 5 9
9 1 9 7 3 3
1 9 7 3 5 1 9 7 3 7 1 9 7 3 9 1 9 7 5 3 1 9 7 5 5 1 9 7 5 7 1 9 7
5 9 1 9 7 7
3 1 9 7 7 5 1 9 7 7 7 1 9 7 7 9 1 9 7 9 3 1 9 7 9 5 1 9 7 9 7 1 9 7
9 9 1 9 9
3 3 1 9 9 3 5 1 9 9 3 7 1 9 9 3 9 1 9 9 5 3 1 9 9 5 5 1 9 9 5 7 1
9 9 5 9 1 9

9 7 3 1 9 9 7 5 1 9 9 7 7 1 9 9 7 9 1 9 9 9 3 1 9 9 9 5 1 9 9 9 7
1 9 9 9 9 3
3 3 3 3 5 3 3 3 3 7 3 3 3 3 9 3 3 3 5 5 3 3 3 5 7 3 3 3 5 9 3 3
3 7 5 3 3 3 7
7 3 3 3 7 9 3 3 3 9 5 3 3 3 9 7 3 3 3 9 9 3 3 5 3 5 3 3 5 3 7 3
3 5 3 9 3 3 5
5 5 3 3 5 5 7 3 3 5 5 9 3 3 5 7 5 3 3 5 7 7 3 3 5 7 9 3 3 5 9 5
3 3 5 9 7 3 3
5 9 9 3 3 7 3 5 3 3 7 3 7 3 3 7 3 9 3 3 7 5 5 3 3 7 5 7 3 3 7 5
9 3 3 7 7 5 3
3 7 7 7 3 3 7 7 9 3 3 7 9 5 3 3 7 9 7 3 3 7 9 9 3 3 9 3 5 3 3 9
3 7 3 3 9 3 9
3 3 9 5 5 3 3 9 5 7 3 3 9 5 9 3 3 9 7 5 3 3 9 7 7 3 3 9 7 9 3 3
9 9 5 3 3 9 9
7 3 3 9 9 9 3 5 3 5 5 3 5 3 5 7 3 5 3 5 9 3 5 3 7 5 3 5 3 7 7 3
5 3 7 9 3 5 3
9 5 3 5 3 9 7 3 5 3 9 9 3 5 5 3 7 3 5 5 3 9 3 5 5 5 5 3 5 5 5 7
3 5 5 5 9 3 5
5 7 5 3 5 5 7 7 3 5 5 7 9 3 5 5 9 5 3 5 5 9 7 3 5 5 9 9 3 5 7 3
7 3 5 7 3 9 3
5 7 5 5 3 5 7 5 7 3 5 7 5 9 3 5 7 7 5 3 5 7 7 7 3 5 7 7 9 3 5 7
9 5 3 5 7 9 7
3 5 7 9 9 3 5 9 3 7 3 5 9 3 9 3 5 9 5 5 3 5 9 5 7 3 5 9 5 9 3 5
9 7 5 3 5 9 7
7 3 5 9 7 9 3 5 9 9 5 3 5 9 9 7 3 5 9 9 9 3 7 3 7 5 3 7 3 7 7 3
7 3 7 9 3 7 3
9 5 3 7 3 9 7 3 7 3 9 9 3 7 5 3 9 3 7 5 5 5 3 7 5 5 7 3 7 5 5 9

3 7 5 7 5 3 7
5 7 7 3 7 5 7 9 3 7 5 9 5 3 7 5 9 7 3 7 5 9 9 3 7 7 3 9 3 7 7 5
5 3 7 7 5 7 3
7 7 5 9 3 7 7 7 5 3 7 7 7 7 3 7 7 7 9 3 7 7 9 5 3 7 7 9 7 3 7 7 9
9 3 7 9 3 9
3 7 9 5 5 3 7 9 5 7 3 7 9 5 9 3 7 9 7 5 3 7 9 7 7 3 7 9 7 9 3 7
9 9 5 3 7 9 9
7 3 7 9 9 9 3 9 3 9 5 3 9 3 9 7 3 9 3 9 9 3 9 5 5 5 3 9 5 5 7 3
9 5 5 9 3 9 5
7 5 3 9 5 7 7 3 9 5 7 9 3 9 5 9 5 3 9 5 9 7 3 9 5 9 9 3 9 7 5 5
3 9 7 5 7 3 9
7 5 9 3 9 7 7 5 3 9 7 7 7 3 9 7 7 9 3 9 7 9 5 3 9 7 9 7 3 9 7 9
9 3 9 9 5 5 3
9 9 5 7 3 9 9 5 9 3 9 9 7 5 3 9 9 7 7 3 9 9 7 9 3 9 9 9 5 3 9 9
9 7 3 9 9 9 9
5 5 5 5 5 7 5 5 5 5 9 5 5 5 7 7 5 5 5 7 9 5 5 5 9 7 5 5 5 9 9 5
5 7 5 7 5 5 7
5 9 5 5 7 7 7 5 5 7 7 9 5 5 7 9 7 5 5 7 9 9 5 5 9 5 7 5 5 9 5 9
5 5 9 7 7 5 5
9 7 9 5 5 9 9 7 5 5 9 9 9 5 7 5 7 7 5 7 5 7 9 5 7 5 9 7 5 7 5 9
9 5 7 7 5 9 5
7 7 7 7 5 7 7 7 9 5 7 7 9 7 5 7 7 9 9 5 7 9 5 9 5 7 9 7 7 5 7 9 7
9 5 7 9 9 7
5 7 9 9 9 5 9 5 9 7 5 9 5 9 9 5 9 7 7 7 5 9 7 7 9 5 9 7 9 7 5 9
7 9 9 5 9 9 7
7 5 9 9 7 9 5 9 9 9 7 5 9 9 9 9 7 7 7 7 7 9 7 7 7 9 9 7 7 9 7 9
7 7 9 9 9 7 9

7 9 9 7 9 9 9 9 9

This method works because the key codes roll into one
another. The vehicle doesn’t know where one code ends and
the other one starts, which means that you don’t have to try
each possibility in order to stumble on the right combination.

Flashback: Hotwiring

No car hacking book would be complete without some
discussion of hotwiring—a truly brute-force attack.
Unfortunately, this attack has been obsolete since about the
mid-1990s, but you still see it in countless movies, so I’m
including it here. My goal isn’t to help you go out and hotwire
a car but to give you a sense of how hotwiring was done.

In the past, ignition systems used a vehicle’s key to complete
an electrical circuit: turn the key and you’ve connected the
starter wire to the ignition and battery wires. No tricky
immobilizer system got in the way of the vehicle starting; the
security was purely electrical.

To hotwire a susceptible car, you’d remove the steering
wheel to expose the ignition cylinder and typically three
bundles of wires. Using the car’s manual or simply by tracing
the wires, you’d locate the ignition-battery bundle and the
starter wire. Next, you’d strip the battery and ignition wires
and twist them together (see Figure 12-9). Then, you’d

“spark” the bundle with the starter wire to start the car. Once
the car started, you’d remove the starter wire.

Figure 12-9: Simple illustration of which wires to cross

If a car had a steering wheel lock, you’d bypass it by
breaking off the metal keyhole spring and breaking the lock,
or sometimes just by forcing the wheel to turn until you
broke the lock.

Summary

In this chapter, you learned about low-level wireless
communications. We went over methods for identifying
wireless signals and common attacks against wireless
communications. We demonstrated a few hacks using the
TPMS to show that even seemingly benign devices are
vulnerable to attack. We also reviewed key fob security and
demonstrated a few simple hacks there. Vehicle theft is
rapidly adapting to modern electronic vehicles, and keyless
system attacks are one of the main hacks used in thefts.
Understanding the different systems, their strengths and

weaknesses, and how to attack them can help you
understand how vulnerable your vehicle is to theft. Finally,
we discussed some old-school nonelectronic hacks, like
manually brute-forcing door keypads and hotwiring.

In Chapter 13, we’ll look at a common, and arguably less
malicious, type of hacking: performance tuning.

