
The Car Hacker's Handbook:
A Guide for the Penetration
Tester - Craig Smith (2016)
Chapter 7. BUILDING AND USING ECU
TEST BENCHES

An ECU test bench, like the one shown in Figure 7-1,
consists of an ECU, a power supply, an optional power
switch, and an OBD-II connector. You can also add an IC or
other CAN-related systems for testing, but just building a
basic ECU test bench is a great way to learn the CAN bus
and how to create custom tools. In this chapter, we’ll walk
step by step through the process of building a test bench for
development and testing.

The Basic ECU Test Bench

The most basic test bench is the device that you want to
target and a power supply. When you give an ECU the proper
amount of power, you can start performing tests on its inputs
and communications. For example, Figure 7-1 shows a basic
test bench containing a PC power supply and an ECU.

Figure 7-1: A simple ECU test bench

However, you’ll often want to at least add some components
or ports to make the test bench easier to use and operate.
To make it easier to turn the device on and off, you can add a

switch to the power supply. An OBD port allows for
specialized mechanics tools to communicate with the
vehicle’s network. In order for that OBD port to fully function,
we need to expose the vehicle’s network wires from the ECU
to the OBD port.

Finding an ECU

One place to find an ECU is, of course, at the junkyard. You’ll
typically find the ECU behind a car’s radio in the center
console or behind the glove box. If you’re having trouble
finding it, try using the massive wiring harness to trace back
to the ECU. When pulling one out yourself (it should cost
only about $150), be sure to pull it from a vehicle that
supports CAN. You can use a reference website such
as http://www.auterraweb.com/aboutcan.html to help you
identify a target vehicle. Also, make sure you leave at least a
pigtail’s worth of wiring when you remove the ECU; this will
make it easier to wire up later.

If you’re not comfortable pulling devices out of junked cars,
you can order an ECU online at a site like car-part.com. The
cost will be a bit higher because you’re paying for someone
else to get the part and ship it to you. Be sure that the ECU
you buy includes the wire bundles.

NOTE

One downside to buying an ECU online is that it may be
difficult to acquire parts from the same car if you need
multiple parts. For instance, you may need both the body
control module (BCM) and the ECU because you want to
include keys and the immobilizer is in the BCM. In this case,
if you mix and match from two different vehicles, the vehicle
won’t “start” properly.

Instead of harvesting or buying a used ECU, you could also
use a prebuilt simulator, like the ECUsim 2000 by ScanTool
(see Figure 7-2). A simulator like ECUsim will cost around
$200 per protocol and will support only OBD/UDS
communications. Simulators can generate faults and MIL
lights, and they include fault knobs for changing common
vehicle parameters, such as speed. Unless you’re building an
application that uses only UDS packets, however, a simulator
probably isn’t the way to go.

Figure 7-2: ECUsim OBD simulator

Dissecting the ECU Wiring

Once you have all of the parts, you’ll need to find the ECU’s
wiring diagram to determine which wires you need to
connect in order to get it to work. Visit a website such as
ALLDATA (http://www.alldata.com/) or Mitchell 1
(http://mitchell1.com/main/) to get a complete wiring
diagram. You’ll find that off-the-shelf service manuals will
sometimes have wiring diagrams, but they’re often
incomplete and contain only common repair areas.

Wiring diagrams aren’t always easy to read, mainly because
some combine numerous small components (see Figure 7-
3). Try to mentally break down each component to get a
better idea of which wires to focus on.

Figure 7-3: Example of an ECU wiring diagram

Pinouts

You can get pinouts for the ECUs on several different
vehicles
from http://www.innovatemotorsports.com/resources/ecu_pi
nout.php and from commercial resources like ALLDATA and

Mitchell 1. Books like the Chilton auto repair manuals include
block diagrams, but you’ll find that they typically cover only
the most common repair components, not the entire ECU.

Block Diagrams

Block diagrams are often easier to read than wiring diagrams
that show all components on the same sheet. Block
diagrams usually show the wiring for only one component
and offer a higher-level overview of the main components,
whereas schematics show all the circuitry details. Some
block diagrams also include a legend showing which
connector block the diagram refers to and the connectors on
that module; you’ll typically find these in the corner of the
block diagram (see Table 7-1).

Table 7-1: Example Connector Legend

CONN ID Pin count Color

C1 68 WH

C2 68 L-GY

C3 68 M-GY

C4 12 BK

The legend should give the connector number, its number
pin count, and the color. For instance, the line C1 = 68 WH
in Table 7-1 means that the C1 connector has 68 pins and is
white. L-GY probably means light gray, and so on. A

connector number like C2-55 refers to connector 2, pin 55.
The connectors usually have a number on the first and last
pin in the row.

Wiring Things Up

Once you have information on the connector’s wiring, it’s
time to wire it up. Wire the CAN to the proper ports on the
connector, as discussed in “OBD-II Connector Pinout Maps”
on page 31. When you provide power—a power supply from
an old PC should suffice—and add a CAN sniffer, you should
see packets. You can use just a simple OBD-II scan tool that
you can pick up at any automotive store. If you have
everything wired correctly, the scan tool should be able to
identify the vehicle, assuming that your test bench includes
the main ECU.

NOTE

Your MIL, or engine light, will most likely be reported
as on by the scan tool/ECU.

If you’ve wired everything but you still don’t see packets on
your CAN bus, you may be missing termination. To address
this problem, start by adding a 120-ohm resistor, as a CAN
bus has 120-ohm resistors at each end of the bus. If that
doesn’t work, add a second resistor. The maximum missing
resistance should be 240 ohms. If the bus still isn’t working,

then recheck your wires and try again.

NOTE

A lot of components communicate with the ECU in a simple
manner, either via set digital signals or through analog
signals. Analog signals are easy to simulate with a
potentiometer and you can often tie a 1 kilohm
potentiometer to the engine temp and fuel lines to control
them.

Building a More Advanced Test Bench

If you’re ready to take your car hacking research further,
consider building a more advanced ECU test bench, like the
one shown in Figure 7-4.

This unit combines an ECU with a BCM because it also has
the original keys to start the vehicle. Notice that the optional
IC has two 1 kilohm potentiometers, or variable resistors, on
the lower left side, both of which are tied to the engine
temperature and fuel lines. We use these potentiometers to
generate sensor signals, as discussed in the following
section. This particular test bench also includes a small MCU
that allows you to simulate sending crankshaft and camshaft
signals to the ECU.

Figure 7-4: More complex test bench

A more complex unit like the one in Figure 7-4 makes it trivial
to determine CAN traffic: just load a sniffer, adjust the knob,
and watch for the packets to change. If you know which
wires you’re targeting and the type of input they take, you
can easily fake signals from most components.

Simulating Sensor Signals

As I mentioned, you can use the potentiometers in this setup
to simulate various vehicle sensors, including the following:

• Coolant temperature sensor

• Fuel sensor

• Oxygen sensors, which detect post-combustion oxygen in
the exhaust

• Throttle position, which is probably already a
potentiometer in the actual vehicle

• Pressure sensors

If your goal is to generate more complex or digital signals,
use a small microcontroller, such as an Arduino, or a
Raspberry Pi.

For our test bench, we also want to control the RPMs and/or
speedometer needle. In order to do this, we need a little
background on how the ECU measures speed.

Hall Effect Sensors

Hall effect sensors are often used to sense engine speed
and crankshaft position (CKP) and to generate digital
signals. In Figure 7-5, the Hall effect sensor uses a shutter
wheel, or a wheel with gaps in it, to measure the rotation
speed. The gallium arsenate crystal changes its conductivity
when exposed to a magnetic field. As the shutter wheel
spins, the crystal detects the magnet and sends a pulse
when not blocked by the wheel. By measuring the frequency
of pulses, you can derive the vehicle speed.

Figure 7-5: Shutter wheel diagram for Hall effect sensor

You can also use the camshaft timing sprocket to measure
speed. When you look at the camshaft timing sprocket, the
magnet is on the side of the wheel (see Figure 7-6).

Figure 7-6: Camshaft timing sprocket

Using a scope on the signal wire shows that the Hall effect
sensor produces a square wave. Typically, there are three
wires on the camshaft sensor: power, ground, and sensor.
Power is usually 12V, but the signal wire typically operates at
5V back to the ECM. Camshaft sensors also come as optical
sensors, which work in a similar fashion except an LED is on
one side and a photocell is on the other.

You can gauge full rotation timing with a missing tooth called
a trigger wheel or with a timing mark. It’s important to know
when the camshaft has made a full rotation. An inductive
camshaft sensor produces a sine wave and will often have a
missing tooth to detect full rotation.

Figure 7-7 shows the camshaft sensor repeating
approximately every 2 milliseconds. The jump or a gap you
see in the wave at around the 40-millisecond mark occurs
when the missing tooth is reached. The location of that gap
marks the point at which the camshaft has completed a full
rotation. In order to fake these camshaft signals into the ECU
test bench, you’d need to write a small sketch for your
microcontroller. When writing microcontroller code to mimic
these sensors, it’s important to know what type of sensor
your vehicle uses so that you’ll know whether to use a digital
or analog output when faking the teeth.

Figure 7-7: Camshaft sensor signals under a scope

Simulating Vehicle Speed

Now, we’ll build a test bench to simulate vehicle speed. We’ll
use this test bench together with the IC shown in Figure 7-
4 to pull a vehicle’s VIN via the OBD-II connector. This will
give us the exact year, make, model, and engine type of the
vehicle. (We looked at how to do this manually in “Unified
Diagnostic Services” on page 54.) Table 7-2 shows the
results.

Table 7-2: Vehicle Information

Once we know a vehicle’s year of manufacture and engine
type, we can fetch the wiring diagram to determine which of
the ECU wires control the engine speed (see Figure 7-8).
Then, we can send simulated speed data to the ECU in order
to measure effects. Using wiring diagrams to simulate real
engine behavior can make it easy to identify target signals
on the CAN bus.

VIN Model Year Make Body Engine

1G1ZT53826F109149 Malibu 2006 Chevrolet Sedan
4Door

3.5L
V6
OHV
12V

Figure 7-8: Wiring diagram showing the engine speed pin

The wiring diagram in Figure 7-8 shows how you can trace
the wire from the CKP sensor so that connector C2, pin 27
receives the engine speed from the crankshaft sensor.
Having identified this pin in the wiring diagram, we locate the
corresponding wire on the ECU. We can connect this wire to
any digital IO pin on an Arduino. In this example, we’ll use pin

2 and then add a potentiometer to A0 to control the speed of
the CKP sensor’s “teeth” going to the ECM. Pin 2 will send
output to C2, pin 27.

In order to simulate engine speed sent from the CKP sensor,
we code up an Arduino sketch to send high and low pulses
with a delay interval mapped to the potentiometer position
(see Listing 7-1).

int ENG_SPD_PIN = 2;
long interval = 500;
long previousMicros = 0;
int state = LOW;

// the setup routine runs once when you press reset
void setup() {
 pinMode(ENG_SPD_PIN, OUTPUT);
}

// the loop routine repeats forever
void loop() {
 unsigned long currentMicros = micros();

 // read the input on analog pin 0
 int sensorValue = analogRead(A0);
 interval = map(sensorValue, 0, 1023, 0, 3000);

 if(currentMicros - previousMicros > interval) {
 previousMicros = currentMicros;

 if (state == LOW)
 state = HIGH;
 else
 state = LOW;

 if (interval == 0)
 state = LOW; // turning the pot all the way down turns it
"off"

 digitalWrite(ENG_SPD_PIN, state);
 }
}

Listing 7-1: Arduino sketch designed to simulate engine
speed

Now, we upload this sketch to the Arduino, power up the test
bench, and when we turn the knob on the potentiometer, the
RPM dial moves on the IC. In Figure 7-9, the second line of
the cansniffer traffic shows bytes 2 and 3—0x0B and 0x89—
changing as we rotate the potentiometer knob for Arbitration
ID 0x110 (the column labeled ID).

Figure 7-9: cansniffer identifying RPMs

NOTE

0x0B and 0x89 don’t directly translate into the RPMs; rather,
they’re shorthand. In other words, if you’re going to 1000
RPMs, you won’t see the hex for 1000. When you query an
engine for RPMs, the algorithm to convert these two bytes
into RPMs is commonly the following:

A is the first byte and B is the second byte. If you apply that
algorithm to what’s shown in Figure 7-9 (converted from hex
to decimal), you get this:

You can simplify this method to taking 0xB89, which is 2953
in decimal form. When you divide this by 4, you get 738.25
RPMs.

When this screenshot was taken, the needle was idling a bit
below the 1 on the RPM gauge, so that’s probably the same
algorithm. (Sometimes you’ll find that the values in the true
CAN packets don’t always match the algorithms used by off-
the-shelf diagnostic tools using the UDS service, but it’s nice
when they do.)

To verify that arbitration ID 0x110 with bytes 2 and 3 controls
the RPM, we’ll send our own custom packet. By flooding the
bus with a loop that sends the following, we’ll peg the needle
at max RPMs.

$ cansend slcan0 110#00ffff3500380000

While this method works and, once connected, takes only a
few seconds to identify the CAN packet responsible for
RPMs, there are still some visible issues. Every so often a
CAN signal shows up that resets the values to 00 00 and
stops the speedometer from moving. So while the ECM is
fairly certain the crankshaft is spinning, it’s detecting a
problem and attempting to reset.

You can use the ISO-TP tools discussed in Chapter 3 to pull
data. In two different terminals, we can check whether there
was a diagnostic code. (You can also use a scan tool.)

In one terminal, enter the following:

$ isotpsniffer -s 7df -d 7e8 slcan0

And in another terminal, send this command:

$ echo "03" | isotpsend -s 7DF -d 7E8 slcan0

You should see this output in the first terminal:

slcan0 7DF [1] 03 - '.'
slcan0 7E8 [6] 43 02 00 68 C1 07 - 'C..h..'

Looks like we have a DTC set. Querying PID 0x03 returned a
4-byte DTC (0x0068C107). The first two bytes make up the
standard DTC (0x00 0x68). This converts to P0068, which
the Chilton manual refers to as “throttle body airflow
performance.” A quick Google search will let you know that
this is just a generic error code that results from a
discrepancy between what the PCM thinks is going on and
what data it’s getting from the intake manifold. If we wanted
to spoof that data as well, we’d need to spoof three
additional sensors: the MAF sensor, the throttle position, and
the manifold air pressure (MAP). Fixing these may not
actually fix our problem, though. The PCM may continue to
think the vehicle is running smoothly, but unless you really
care about fudging all the data, you may be able to find other
ways to trick the signals you want out of the PCM without
having to be immune to triggering DTC faults.

If you don’t want to use an Arduino to send signals, you can
also buy a signal generator. A professional one will cost at

least $150, but you can also get one from SparkFun for
around $50 (http://www.sparkfun.com/products/11394/).
Another great alternative is the JimStim for Megasquirt. This
can be purchased as a kit or fully assembled for $90 from
DIYAutoTune (http://www.diyautotune.com/catalog/jimstim-
15-megasquirt-stimulator-wheel-simulator-assembled-p-
178.html).

Summary

In this chapter you learned how to build an ECU test bench
as an affordable solution to safe vehicle security testing. We
went over where you can get parts for building a test bench
and how to read wiring diagrams so you know how to hook
those parts up. You also learned how to build a more
advanced test bench that can simulate engine signals, in
order to trick components into thinking the vehicle is
present.

Building a test bench can be a time-consuming process
during your initial research, but it will pay off in the end. Not
only is it safer to do your testing on a test bench, but these
units are also great for training and can be transported to
where you need them.

