
The Car Hacker's Handbook:
A Guide for the Penetration
Tester - Craig Smith (2016)
Chapter 2. BUS PROTOCOLS

In this chapter, we’ll discuss the different bus protocols
common in vehicle communications. Your vehicle may have
only one of these, or if it was built earlier than 2000, it may
have none.

Bus protocols govern the transfer of packets through the
network of your vehicle. Several networks and hundreds of
sensors communicate on these bus systems, sending
messages that control how the vehicle behaves and what
information the network knows at any given time.



Each manufacturer decides which bus and which protocols
make the most sense for its vehicle. One protocol, the CAN
bus, exists in a standard location on all vehicles: on the OBD-
II connector. That said, the packets themselves that travel
over a vehicle’s CAN bus aren’t standardized.

Vehicle-critical communication, such as RPM management
and braking, happens on high-speed bus lines, while
noncritical communication, such as door lock and A/C
control, happens on mid- to low-speed bus lines.

We’ll detail the different buses and protocols you may run
across on your vehicle. To determine the bus lines for your
specific vehicle, check its OBD-II pinout online.

The CAN Bus

CAN is a simple protocol used in manufacturing and in the
automobile industry. Modern vehicles are full of little
embedded systems and electronic control units (ECUs) that
can communicate using the CAN protocol. CAN has been a
standard on US cars and light trucks since 1996, but it
wasn’t made mandatory until 2008 (2001 for European
vehicles). If your car is older than 1996, it still may have CAN,
but you’ll need to check.

CAN runs on two wires: CAN high (CANH) and CAN low
(CANL). CAN uses differential signaling (with the exception



of low-speed CAN, discussed in “The GMLAN Bus” on page
20), which means that when a signal comes in, CAN raises
the voltage on one line and drops the other line an equal
amount (see Figure 2-1). Differential signaling is used in
environments that must be fault tolerant to noise, such as in
automotive systems and manufacturing.

Figure 2-1: CAN differential signaling

Figure 2-1 shows a signal captured using a PicoScope, which
listens to both CANH (darker lines at the top of the graph)
and CANL (lighter lines at the bottom of the graph). Notice
that when a bit is transmitted on the CAN bus, the signal will
simultaneously broadcast both 1V higher and lower. The
sensors and ECUs have a transceiver that checks to ensure



both signals are triggered; if they are not, the transceiver
rejects the packet as noise.

The two twisted-pair wires make up the bus and require the
bus to be terminated on each end. There’s a 120-ohm
resistor across both wires on the termination ends. If the
module isn’t on the end of the bus, it doesn’t have to worry
about termination. As someone who may tap into the lines,
the only time you’ll need to worry about termination is if you
remove a terminating device in order to sniff the wires.

The OBD-II Connector

Many vehicles come equipped with an OBD-II connector,
also known as the diagnostic link connector (DLC), which
communicates with the vehicle’s internal network. You’ll
usually find this connector under the steering column or
hidden elsewhere on the dash in a relatively accessible
place. You may have to hunt around for it, but its outline
looks similar to that in Figure 2-2.



Figure 2-2: Possible locations of the OBD-II connector

In some vehicles, you’ll find these connectors behind small
access panels. They’ll typically be either black or white.
Some are easy to access, and others are tucked up under
the plastic. Search and you shall find!

Finding CAN Connections

CAN is easy to find when hunting through cables because its
resting voltage is 2.5V. When a signal comes in, it’ll add or
subtract 1V (3.5V or 1.5V). CAN wires run through the vehicle
and connect between the ECUs and other sensors, and
they’re always in dual-wire pairs. If you hook up a multimeter
and check the voltage of wires in your vehicle, you’ll find that



they’ll be at rest at 2.5V or fluctuating by 1V. If you find a wire
transmitting at 2.5V, it’s almost certainly CAN.

You should find the CANH and CANL connections on pins 6
and 14 of your OBD-II connector, as shown in Figure 2-3.

Figure 2-3: CAN pins cable view on the OBD-II connector

In the figure, pins 6 and 14 are for standard high-speed CAN
lines (HS-CAN). Mid-speed and low-speed communications
happen on other pins. Some cars use CAN for the mid-speed
(MS-CAN) and low-speed (LS-CAN), but many vehicles use
different protocols for these communications.



You’ll find that not all buses are exposed via the OBD-II
connector. You can use wiring diagrams to help locate
additional “internal” bus lines.

CAN Bus Packet Layout

There are two types of CAN
packets: standard and extended. Extended packets are like
standard ones but with a larger space to hold IDs.

Standard Packets

Each CAN bus packet contains four key elements:

Arbitration ID The arbitration ID is a broadcast message
that identifies the ID of the device trying to communicate,
though any one device can send multiple arbitration IDs. If
two CAN packets are sent along the bus at the same time,
the one with the lower arbitration ID wins.

Identifier extension (IDE) This bit is always 0 for standard
CAN.

Data length code (DLC) This is the size of the data, which
ranges from 0 to 8 bytes.

Data This is the data itself. The maximum size of the data
carried by a standard CAN bus packet can be up to 8 bytes,
but some systems force 8 bytes by padding out the packet.



Figure 2-4 shows the format of standard CAN packets.

Figure 2-4: Format of standard CAN packets

Because CAN bus packets are broadcast, all controllers on
the same network see every packet, kind of like UDP on
Ethernet networks. The packets don’t carry information
about which controller (or attacker) sent what. Because any
device can see and transmit packets, it’s trivial for any
device on the bus to simulate any other device.

Extended Packets

Extended packets are like standard ones, except that they
can be chained together to create longer IDs. Extended
packets are designed to fit inside standard CAN formatting
in order to maintain backward compatibility. So if a sensor
doesn’t have support for extended packets, it won’t break if
another packet transmits extended CAN packets on the
same network.

Standard packets also differ from extended ones in their use



of flags. When looking at extended packets in a network
dump, you’ll see that unlike standard packets, extended
packets use substitute remote request (SRR) in place of the
remote transmission request (RTR) with SSR set to 1. They’ll
also have the IDE set to 1, and their packets will have an 18-
bit identifier, which is the second part of the standard 11-bit
identifier. There are additional CAN-style protocols that are
specific to some manufacturers, and they’re also backward
compatible with standard CAN in much the same way as
extended CAN.

The ISO-TP Protocol

ISO 15765-2, also known as ISO-TP, is a standard for
sending packets over the CAN bus that extends the 8-byte
CAN limit to support up to 4095 bytes by chaining CAN
packets together. The most common use of ISO-TP is for
diagnostics (see “Unified Diagnostic Services” on page 54)
and KWP messages (an alternative protocol to CAN), but it
can also be used any time large amounts of data need to be
transferred over CAN. The can-utils program
includes isotptun, a proof-of-concept tunneling tool for
SocketCAN that allows two devices to tunnel IP over CAN.
(For a detailed explanation of how to install and use can-
utils, see “Setting Up can-utils to Connect to CAN Devices”
on page 36.)

In order to encapsulate ISO-TP into CAN, the first byte is



used for extended addressing, leaving only 7 bytes for data
per packet. Sending lots of information over ISO-TP can
easily flood the bus, so be careful when using this standard
for large transfers on an active bus.

The CANopen Protocol

Another example of extending the CAN protocol is the
CANopen protocol. CANopen breaks down the 11-bit
identifier to a 4-bit function code and 7-bit node ID—a
combination known as a communication object identifier
(COB-ID). A broadcast message on this system has 0x for
both the function code and the node ID. CANopen is seen
more in industrial settings than it is in automotive ones.

If you see a bunch of arbitration IDs of 0x0, you’ve found a
good indicator that the system is using CANopen for
communications. CANopen is very similar to normal CAN but
has a defined structure around the arbitration IDs. For
example, heartbeat messages are in the format of 0x700 +
node ID. CANopen networks are slightly easier to reverse
and document than standard CAN bus.

The GMLAN Bus

GMLAN is a CAN bus implementation by General Motors. It’s
based on ISO 15765-2 ISO-TP, just like UDS (see “Unified
Diagnostic Services” on page 54). The GMLAN bus consists



of a single-wire low-speed and a dual-wire high-speed bus.
The low-speed bus, a single-wire CAN bus that operates at
33.33Kbps with a maximum of 32 nodes, was adopted in an
attempt to lower the cost of communication and wiring. It’s
used to transport noncritical information for things like the
infotainment center, HVAC controls, door locks,
immobilizers, and so on. In contrast, the high-speed bus
runs at 500Kbps with a maximum of 16 nodes. Nodes in a
GMLAN network relate to the sensors on that bus.

The SAE J1850 Protocol

The SAE J1850 protocol was originally adopted in 1994 and
can still be found in some of today’s vehicles, for example
some General Motors and Chrysler vehicles. These bus
systems are older and slower than CAN but cheaper to
implement.

There are two types of J1850 protocols: pulse width
modulation (PWM) and variable pulse width (VPW). Figure
2-5 shows where to find PWM pins on the OBD-II connector.
VPW uses only pin 2.



Figure 2-5: PWM pins cable view

The speed is grouped into three classes: A, B, and C. The
10.4Kbps speeds of PWM and VPW are considered class A,
which means they’re devices marketed exclusively for use in
business, industrial, and commercial environments. (The
10.4Kbps J1850 VPW bus meets the automotive industry’s
requirements for low-radiating emissions.) Class B devices
are marketed for use anywhere, including residential
environments and have a second SAE standard
implementation that can communicate at 100Kbps, but it’s
slightly more expensive. The final implementation can
operate at up to 1Mbps, and it’s used in class C devices. As
you might expect, this third implementation is the most



expensive, and it’s used primarily in real-time critical
systems and media networks.

The PWM Protocol

PWM uses differential signaling on pins 2 and 10 and is
mainly used by Ford. It operates with a high voltage of 5V
and at 41.6Kbps, and it uses dual-wire differential signaling,
like CAN.

PMW has a fixed-bit signal, so a 1 is always a high signal and
a 0 is always a low signal. Other than that, the
communication protocol is identical to that of VPW. The
differences are the speed, voltage, and number of wires
used to make up the bus.

The VPW Protocol

VPW, a single-wire bus system, uses only pin 2 and is
typically used by General Motors and Chrysler. VPW has a
high voltage of 7V and a speed of 10.4Kbps.

When compared with CAN, there are some key differences in
the way VPW interprets data. For one, because VPW uses
time-dependent signaling, receiving 1 bit isn’t determined by
just a high potential on the bus. The bit must remain either
high or low for a set amount of time in order to be
considered a single 1 bit or a 0 bit. Pulling the bus to a high
position will put it at around 7V, while sending a low signal



will put it to ground or near-ground levels. This bus also is at
a resting, or nontransmission, stage at a near-ground level
(up to 3V).

VPW packets use the format in Figure 2-6.

Figure 2-6: VPW Format

The data section is a set size—always 11 bits followed by a 1-
bit CRC validity check. Table 2-1 shows the meaning of the
header bits.

Table 2-1: Meaning of Header Bits

Header
bits

Meaning Notes

PPP Message
priority

000 = Highest, 111 = Lowest

H Header size 0 = 3 bytes, 1 = single byte

K In-frame
response

0 = Required, 1 = Not allowed

Y Addressing
mode

0 = Functional, 1 = Physical

ZZ Message type Will vary based on how K and Y
are set



In-frame response (IFR) data may follow immediately after
this message. Normally, an end-of-data (EOD) signal
consisting of 200µs-long low-potential signal would occur
just after the CRC, and if IFR data is included, it’ll start
immediately after the EOD. If IFR isn’t being used, the EOD
will extend to 280µs, causing an end-of-frame (EOF) signal.

The Keyword Protocol and ISO 9141-2

The Keyword Protocol 2000 (ISO 14230), also known
as KWP2000, uses pin 7 and is common in US vehicles
made after 2003. Messages sent using KWP2000 may
contain up to 255 bytes.

The KWP2000 protocol has two variations that differ mainly
in baud initialization. The variations are:

• ISO 14230-4 KWP (5-baud init, 10.4 Kbaud)

• ISO 14230-4 KWP (fast init, 10.4 Kbaud)

ISO 9141-2, or K-Line, is a variation of KWP2000 seen most
often in European vehicles. K-Line uses pin 7 and, optionally,
pin 15, as shown in Figure 2-7. K-Line is a UART protocol
similar to serial. UARTs use start bits and may include a
parity bit and a stop bit. (If you’ve ever set up a modem, you
should recognize this terminology.)



Figure 2-7: KWP K-Line pins cable view

Figure 2-8 shows the protocol’s packet layout. Unlike CAN
packets, K-Line packets have a source (transmitter) and a
destination (receiver) address. K-Line can use the same or a
similar parameter ID (PID) request structure as CAN. (For
more on PIDs, see “Unified Diagnostic Services” on page
54.)

Figure 2-8: KWP K-Line packet layout



The Local Interconnect Network Protocol

The Local Interconnect Network (LIN) is the cheapest of the
vehicle protocols. It was designed to complement CAN. It
has no arbitration or priority code; instead, a single master
node does all the transmission.

LIN can support up to 16 slave nodes that primarily just listen
to the master node. They do need to respond on occasion,
but that’s not their main function. Often the LIN master node
is connected to a CAN bus.

The maximum speed of LIN is 20Kbps. LIN is a single-wire
bus that operates at 12V. You won’t see LIN broken out to
the OBD connector, but it’s often used instead of direct CAN
packets to handle controls to simple devices, so be aware of
its existence.

A LIN message frame includes a header, which is always
sent by the master, and a response section, which may be
sent by master or slave (see Figure 2-9).

Figure 2-9: LIN format



The SYNC field is used for clock synchroniziation. The ID
represents the message contents—that is, the type of data
being transmitted. The ID can contain up to 64 possibilities.
ID 60 and 61 are used to carry diagnostic information.

When reading diagnostic information, the master sends with
ID 60 and the slave responds with ID 61. All 8 bytes are used
in diagnostics. The first byte is called the node address for
diagnostics (NAD). The first half of the byte range (that is, 1–
127) is defined for ISO-compliant diagnostics, while 128–255
can be specific to that device.

The MOST Protocol

The Media Oriented Systems Transport (MOST) protocol is
designed for multimedia devices. Typically, MOST is laid out
in a ring topology, or virtual star, that supports a maximum of
64 MOST devices. One MOST device acts as the timing
master, which continuously feeds frames into the ring.

MOST runs at approximately 23 Mbaud and supports up to
15 uncompressed CD quality audio or MPEG1 audio/video
channels. A separate control channel runs at 768 Kbaud and
sends configuration messages to the MOST devices.

MOST comes in three speeds: MOST25, MOST50, and
MOST150. Standard MOST, or MOST25, runs on plastic
optical fiber (POF). Transmission is done through the red



light wavelength at 650 nm using an LED. A similar protocol,
MOST50, doubles the bandwidth and increases the frame
length to 1025 bits. MOST50 traffic is usually transported on
unshielded twisted-pair (UTP) cables instead of optical fiber.
Finally, MOST150 implements Ethernet and increases the
frame rate to 3072 bits or 150Mbps—approximately six times
the bandwidth of MOST25.

Each MOST frame has three channels:

Synchronous Streamed data (audio/video)

Asynchronous Packet distributed data (TCP/IP)

Control Control and low-speed data (HMI)

In addition to a timing master, a MOST network master
automatically assigns addresses to devices, which allows for
a kind of plug-and-play structure. Another unique feature of
MOST is that, unlike other buses, it routes packets through
separate inport and outport ports.

MOST Network Layers

Unless your goal is to hack a car’s video or audio stream, the
MOST protocol may not be all that interesting to you. That
said, MOST does allow access to the in-vehicle microphone
or cell system, as well as traffic information that’s likely to be
of interest to malware authors.



Figure 2-10 shows how MOST is divided up amongst the
seven layers of the Open Systems Interconnection (OSI)
model that standardizes communication over networks. If
you’re familiar with other media-based networking protocols,
then MOST may look familiar.

Figure 2-10: MOST divided into the seven layers of the OSI
model. The OSI layers are in the right column.

MOST Control Blocks

In MOST25, a block consists of 16 frames. A frame is 512
bits and looks like the illustration in Figure 2-11.

Figure 2-11: MOST25 frame



Synchronous data contains 6 to 15 quadlets (each quadlet is
4 bytes), and asynchronous data contains 0 to 9 quadlets. A
control frame is 2 bytes, but after combining a full block, or
16 frames, you end up with 32 bytes of control data.

An assembled control block is laid out as shown in Figure 2-
12.

Figure 2-12: Assembled control block layout

The data area contains the FblockID, InstID, FktID, OP Type,
Tel ID, Tel Len, and 12 bytes of data. FblockIDs are the core
component IDs, or function blocks. For example, an FblockID
of 0x52 might be the navigation system. InstID is the
instance of the function block. There can be more than one
core function, such as having two CD changes. InstID
differentiates which core to talk to. FktID is used to query
higher-level function blocks. For instance, a FktID of 0x0
queries a list of function IDs supported by the function
block. OP Type is the type of operation to perform, get, set,
increment, decrement, and so forth. The Tel ID and Len are
the type of telegram and length, respectively. Telegram
types represent a single transfer or a multipacket transfer
and the length of the telegram itself.

MOST50 has a similar layout to MOST25 but with a larger



data section. MOST150 provides two additional channels:
Ethernet and Isochronous. Ethernet works like normal TCP/IP
and Appletalk setups. Isochronous has three mechanisms:
burst mode, constant rate, and packet streaming.

Hacking MOST

MOST can be hacked from a device that already supports it,
such as through a vehicle’s infotainment unit or via an
onboard MOST controller. The Linux-based project
most4linux provides a kernel driver for MOST PCI devices
and, as of this writing, supports Siemens CT SE 2 and OASIS
Silicon Systems or SMSC PCI cards. The most4linux driver
allows for user-space communication over the MOST
network and links to the Advanced Linux Sound Architecture
(ALSA) framework to read and write audio data. At the
moment, most4linux should be considered alpha quality, but
it includes some example utilities that you may be able to
build upon, namely:

most_aplay Plays a .wav file

ctrl_tx Sends a broadcast control message and checks
status

sync_tx Constantly transmits

sync_rx Constantly receives



The current most4linux driver was written for 2.6 Linux
kernels, so you may have your work cut out for you if you
want to make a generic sniffer. MOST is rather expensive to
implement, so a generic sniffer won’t be cheap.

The FlexRay Bus

FlexRay is a high-speed bus that can communicate at
speeds of up to 10Mbps. It’s geared for time-sensitive
communication, such as drive-by-wire, steer-by-wire, brake-
by-wire, and so on. FlexRay is more expensive to implement
than CAN, so most implementations use FlexRay for high-
end systems, CAN for midrange, and LIN for low-cost
devices.

Hardware

FlexRay uses twisted-pair wiring but can also support a
dual-channel setup, which can increase fault tolerance and
bandwidth. However, most FlexRay implementations use
only a single pair of wiring similar to CAN bus
implementations.

Network Topology

FlexRay supports a standard bus topology, like CAN bus,
where many ECUs run off a twisted-pair bus. It also supports
star topology, like Ethernet, that can run longer segments.
When implemented in the star topology, a FlexRay hub is a



central, active FlexRay device that talks to the other nodes.
In a bus layout, FlexRay requires proper resistor termination,
as in a standard CAN bus. The bus and star topologies can
be combined to create a hybrid layout if desired.

Implementation

When creating a FlexRay network, the manufacturer must tell
the devices about the network setup. Recall that in a CAN
network each device just needs to know the baud rate and
which IDs it cares about (if any). In a bus layout, only one
device can talk on the bus at a time. In the case of the CAN
bus, the order of who talks first on a collision is determined
by the arbitration ID.

In contrast, when FlexRay is configured to talk on a bus, it
uses something called a time division multiple access
(TDMA) scheme to guarantee determinism: the rate is
always the same (deterministic), and the system relies on the
transmitters to fill in the data as the packets pass down the
wire, similar to the way cellular networks like GSM operate.
FlexRay devices don’t automatically detect the network or
addresses on the network, so they must have that
information programed in at manufacturing time.

While this static addressing approach cuts down on cost
during manufacturing, it can be tricky for a testing device to
participate on the bus without knowing how the network is



configured, as a device added to your FlexRay network won’t
know what data is designed to go into which slots. To
address this problem, specific data exchange formats, such
as the Field Bus Exchange Format (FIBEX), were designed
during the development of FlexRay.

FIBEX is an XML format used to describe FlexRay, as well as
CAN, LIN, and MOST network setups. FIBEX topology maps
record the ECUs and how they are connected via channels,
and they can implement gateways to determine the routing
behavior between buses. These maps can also include all
the signals and how they’re meant to be interpreted.

FIBEX data is used during firmware compile time and allows
developers to reference the known network signals in their
code; the compiler handles all the placement and
configuration. To view a FIBEX, download FIBEX Explorer
from http://sourceforge.net/projects/fibexplorer/.

FlexRay Cycles

A FlexRay cycle can be viewed as a packet. The length of
each cycle is determined at design time and should consist
of four parts, as shown in Figure 2-13.

Figure 2-13: Four parts of a FlexRay cycle



The static segment contains reserved slots for data that
always represent the same meaning. The dynamic segment
slots contain data that can have different representations.
The symbol window is used by the network for signaling, and
the idle segment (quiet time) is used for synchronization.

The smallest unit of time on FlexRay is called a macrotick,
which is typically one millisecond. All nodes are time synced,
and they trigger their macrotick data at the same time.

The static section of a FlexRay cycle contains a set amount
of slots to store data, kind of like empty train cars. When an
ECU needs to update a static data unit, it fills in its defined
slot or car; every ECU knows which car is defined for it. This
system works because all of the participants on a FlexRay
bus are time synchronized.

The dynamic section is split up into minislots, typically one
macrotick long. The dynamic section is usually used for less
important, intermittent data, such as internal air
temperature. As a minislot passes, an ECU may choose to fill
the minislots with data. If all the minislots are full, the ECU
must wait for the next cycle.

In Figure 2-14, the FlexRay cycles are represented as train
cars. Transmitters responsible for filling in information for
static slots do so when the cycle passes, but dynamic slots
are filled in on a first-come, first-served basis. All train cars



are the same size and represent the time deterministic
properties of FlexRay.

Figure 2-14: FlexRay train representing cycles

The symbol window isn’t normally used directly by most
FlexRay devices, which means that when thinking like a
hacker, you should definitely mess with this section. FlexRay
clusters work in states that are controlled by the FlexRay
state manager. According to AUTOSAR 4.2.1 Standard, these
states are as follows: ready, wake-up, start-up, halt-req,
online, online-passive, keyslot-only, and low-number-of-
coldstarters.

While most states are obvious, some need further
explanation. Specifically, online is the normal communication
state, while online-passive should only occur when there are
synchronization errors. In online-passive mode, no data is
sent or received. Keyslot-only means that data can be
transmitted only in the key slots. Low-number-of-
coldstarters means that the bus is still operating in full
communication mode but is relying on the sync frames only.



There are additional operational states, too, such as config,
sleep, receive only, and standby.

Packet Layout

The actual packet that FlexRay uses contains several fields
and fits into the cycle in the static or dynamic slot
(see Figure 2-15).

Figure 2-15: FlexRay packet layout

The status bits are:

• Reserved bit

• Payload preamble indicator

• NULL frame indicator

• Sync frame indicator

• Startup frame indicator

The frame ID is the slot the packet should be transmitted in
when used for static slots. When the packet is destined for a
dynamic slot (1–2047), the frame ID represents the priority



of this packet. If two packets have the same signal, then the
one with the highest priority wins. Payload length is the
number in words (2 bytes), and it can be up to 127 words in
length, which means that a FlexRay packet can carry 254
bytes of data—more than 30 times that of a CAN packet.
Header CRC should be obvious, and the cycle count is used
as a communication counter that increments each time a
communication cycle starts.

One really neat thing about static slots is that an ECU can
read earlier static slots and output a value based on those
inputs in the same cycle. For instance, say you have a
component that needs to know the position of each wheel
before it can output any needed adjustments. If the first four
slots in a static cycle contain each wheel position, the
calibration ECU can read them and still have time to fill in a
later slot with any adjustments.

Sniffing a FlexRay Network

As of this writing, Linux doesn’t have official support for
FlexRay, but there are some patches from various
manufacturers that add support to certain kernels and
architectures. (Linux has FlexCAN support, but FlexCAN is a
CAN bus network inspired by FlexRay.)

At this time, there are no standard open source tools for
sniffing a FlexRay network. If you need a generic tool to sniff



FlexRay traffic, you currently have to go with a proprietary
product that’ll cost a lot. If you want to monitor a FlexRay
network without a FIBEX file, you’ll at least need to know the
baud rate of the bus. Ideally, you’ll also know the cycle
length (in milliseconds) and, if possible, the size of the
cluster partitioning (static-to-dynamic ratio). Technically, a
FlexRay cluster can have up to 1048 configurations with 74
parameters. You’ll find the approach to identifying these
parameters detailed in the paper “Automatic Parameter
Identification in FlexRay based Automotive Communication
Networks” (IEEE, 2006) by Eric Armengaud, Andreas
Steininger, and Martin Horauer.

When spoofing packets on a FlexRay network with two
channels, you need to simultaneously spoof both. Also, you’ll
encounter FlexRay implementations called Bus Guardian that
are designed to prevent flooding or monopolization of the
bus by any one device. Bus Guardian works at the hardware
level via a pin on the FlexRay chip typically called Bus
Guardian Enable (BGE). This pin is often marked as optional,
but the Bus Guardian can drive this pin too high to disable a
misbehaving device.

Automotive Ethernet

Because MOST and FlexRay are expensive and losing
support (the FlexRay consortium appears to have
disbanded), most newer vehicles are moving to Ethernet.



Ethernet implementations vary, but they’re basically the
same as what you’d find in a standard computer network.
Often, CAN packets are encapsulated as UDP, and audio is
transported as voice over IP (VoIP). Ethernet can transmit
data at speeds up to 10Gbps, using nonproprietary protocols
and any chosen topology.

While there’s no common standard for CAN traffic,
manufacturers are starting to use the IEEE 802.1AS Audio
Video Bridging (AVB) standard. This standard supports
quality of service (QoS) and traffic shaping, and it uses time-
synchronized UDP packets. In order to achieve this
synchronization, the nodes follow a best master
clock algorithm to determine which node is to be the timing
master. The master node will normally sync with an outside
timing source, such as GPS or (worst case) an on-board
oscillator. The master syncs with the other nodes by sending
timed packets (10 milliseconds), the slave responds with
a delay request, and the time offset is calculated from that
exchange.

From a researcher’s perspective, the only challenge with
vehicle Ethernet lies in figuring out how to talk to the
Ethernet. You may need to make or buy a custom cable to
communicate with vehicle Ethernet cables because they
won’t look like the standard twisted-pair cables that you’d
find in a networking closet. Typically, a connector will just be



wires like the ones you find connected to an ECU. Don’t
expect the connectors to have their own plug, but if they do,
it won’t look like an RJ-45 connector. Some exposed
connectors are actually round, as shown in Figure 2-16.

Figure 2-16: Round Ethernet connectors

OBD-II Connector Pinout Maps

The remaining pins in the OBD-II pinout are manufacturer
specific. Mappings vary by manufacturer, and these are just
guidelines. Your pinout could differ depending on your make
and model. For example, Figure 2-17 shows a General
Motors pinout.



Figure 2-17: Complete OBD pinout cable view for a General
Motors vehicle

Notice that the OBD connector can have more than one CAN
line, such as a low-speed line (LS-CAN) or a mid-speed one
(MS-CAN). Low-speed operates around 33Kbps, mid-speed
is around 128Kbps, and high-speed (HS-CAN) is around
500Kbps.

Often you’ll use a DB9-to-OBDII connector when connecting
your sniffer to your vehicle’s OBD-II connector. Figure 2-



18 shows the plug view, not that of the cable.

Figure 2-18: Typical DB9 connector plug view. An asterisk
(*) means that the pin is optional. A DB9 adapter can have
as few as three pins connected.

This pinout is a common pinout in the United Kingdom, and if
you’re making a cable yourself, this one will be the easiest to
use. However, some sniffers, such as many Arduino shields,
expect the US-style DB9 connector (see Figure 2-19).



Figure 2-19: US-style DB9 connector, plug view

The US version has more features and gives you more
access to other OBD connectors besides just CAN. Luckily,
power is pin 9 on both style connectors, so you shouldn’t fry
your sniffer if you happen to grab the wrong cable. Some
sniffers, such as CANtact, have jumpers that you can set
depending on which style cable you’re using.

The OBD-III Standard

OBD-III is a rather controversial evolution of the OBD-II
standard. OBD-II was originally designed to be compliant



with emissions testing (at least from the regulators’
perspective), but now that the powertrain control module
(PCM) knows whether a vehicle is within guidelines, we’re
still left with the inconvenience of the vehicle owner having
to go for testing every other year. The OBD-III standard
allows the PCM to communicate its status remotely without
the owner’s interaction. This communication is typically
accomplished through a roadside transponder, but cell
phones and satellite communications work as well.

The California Air Resources Board (CARB) began testing
roadside readers for OBD-III in 1994 and is capable of
reading vehicle data from eight lanes of traffic traveling at
100 miles per hour. If a fault is detected in the system, it’ll
transmit the diagnostic trouble codes (DTC) and vehicle
identification numbers (VIN) to a nearby transponder (see
“Diagnostic Trouble Codes” on page 52). The idea is to have
the system report that pollutants are entering the
atmosphere without having to wait up to two years for an
emissions check.

Most implementations of OBD-III are manufacturer specific.
The vehicle phones home to the manufacturer with faults
and then contacts the owner to inform them of the need for
repairs. As you might imagine, this system has some obvious
legal questions that still need to be answered, including the
risk of mass surveillance of private property. Certainly,



there’s lots of room for abuses by law enforcement, including
speed traps, tracking, immobilization, and so on.

Some submitted request for proposals to integrate OBD-III
into vehicles claim to use transponders to store the following
information:

• Date and time of current query

• Date and time of last query

• VIN

• Status, such as “OK,” “Trouble,” or “No response”

• Stored codes (DTCs)

• Receiver station number

It’s important to note that even if OBD-III sends only DTC
and VIN, it’s trivial to add additional metadata, such as
location, time, and history of the vehicle passing the
transponder. For the most part, OBD-III is the bogeyman
under the bed. As of this writing, it has yet to be deployed
with a transponder approach, although phone-home
systems such as OnStar are being deployed to notify the car
dealer of various security or safety issues.

Summary



When working on your target vehicle, you may run into a
number of different buses and protocols. When you do,
examine the pins that your OBD-II connector uses for your
particular vehicle to help you determine what tools you’ll
need and what to expect when reversing your vehicle’s
network.

I’ve focused in this chapter on easily accessible buses via
the OBD-II connector, but you should also look at your
vehicle wiring diagrams to determine where to find other bus
lines between sensors. Not all bus lines are exposed via the
OBD-II connector, and when looking for a certain packet, it
may be easier to locate the module and bus lines leaving a
specific module in order to reverse a particular packet.
(See Chapter 7 for details on how to read wiring diagrams.)


