
The Car Hacker's Handbook:
A Guide for the Penetration
Tester - Craig Smith (2016)
Chapter 4. DIAGNOSTICS AND LOGGING

The OBD-II connector is primarily used by mechanics to
quickly analyze and troubleshoot problems with a vehicle.
(See “The OBD-II Connector” on page 17 for help locating
the OBD connector.) When a vehicle experiences a fault, it
saves information related to that fault and triggers the
engine warning light, also known as the malfunction
indicator lamp (MIL). These routine diagnostic checks are
handled by the vehicle’s primary ECU, the powertrain control
module (PCM), which can be made up of several ECUs (but
to keep the discussion simple, we’ll refer to it only as the

PCM).

If you trigger faults while experimenting with the bus on a
vehicle, you’ll need to able to read and write to the PCM in
order to clear them. In this chapter, we’ll learn how to fetch
and clear diagnostic codes as well as query the diagnostic
services of the ECU. We’ll also learn how to access a
vehicle’s crash data recordings and how to brute-force
hidden diagnostic codes.

Diagnostic Trouble Codes

The PCM stores fault codes as diagnostic trouble codes
(DTCs). DTCs are stored in different places. For instance,
memory-based DTCs are stored in the PCM’s RAM, which
means they’re erased when power from the battery is lost
(as is true for all DTCs stored in RAM). More serious DTCs
are stored in areas that will survive a power failure.

Faults are usually classified as either hard or soft. Soft faults
map to intermittent issues, whereas hard faults are ones that
won’t go away without some sort of intervention. Often to
determine whether a fault is hard or soft, a mechanic clears
the DTCs and drives the vehicle to see whether the fault
reappears. If it reappears, the fault is a hard fault. A soft fault
could be due to a problem such as a loose gas cap.

Not all faults trigger the MIL light right away. Specifically,

class A faults, which signal a gross emissions failure, light
the MIL right away, while class B faults, which don’t affect
the vehicle’s emissions system, are stored the first time
they’re triggered as a pending fault. The PCM waits to record
several of the same faults before triggering the MIL. Class C
faults often won’t turn on the MIL light but instead trigger a
“service engine soon” type of message. Class D faults don’t
trigger the MIL light at all.

When storing the DTCs, the PCM snapshots all the relevant
engine components in what is known as freeze frame
data, which typically includes information such as the
following:

• DTC involved

• Engine load

• Engine revolutions per minute (RPM)

• Engine temperature

• Fuel trim

• Manifold air pressure/mass air flow (MAP/MAF) values

• Operating mode (open/close loop)

• Throttle position

• Vehicle speed

Some systems store only one freeze frame, usually for the
first DTC triggered or the highest-priority DTC, while others
record multiple ones.

In an ideal world, these snapshots would happen as soon the
DTC occurs, but the freeze frames are typically recorded
about five seconds after a DTC is triggered.

DTC Format

A DTC is a five-character alphanumeric code. For example,
you’ll see codes like P0477 (exhaust pressure control valve
low) and U0151 (lost communication with restraint control
module). The code in the first byte position represents the
basic function of the component that set the code, as shown
in Table 4-1.

Table 4-1: Diagnostic Code Layouts

Byte
position

Description

1 P (0x0) = powertrain, B (0x1) = body,
C (0x2) = chassis, U (0x3) = network

2 0,2,3 (SAE standard) 1,3 (manufacturer
specific)

3 Subgroup of position 1

4 Specific fault area

5 Specific fault area

NOTE

When set to 3, byte 2 is both an SAE-defined standard and a
manufacturer-specific code. Originally, 3 was used
exclusively for manufacturers, but pressure is mounting to
standardize 3 to mean a standard code instead. In modern
cars, if you see a 3 in the second position, it’s probably an
SAE standard code.

The five characters in a DTC are represented by just two raw
bytes on the network. Table 4-2 shows how to break down
the 2 DTC bytes into a full DTC code.

Table 4-2: Diagnostic Code Binary Breakdown

Except for the first two, the characters have a one-to-one
relationship. Refer to Table 4-1 to see how the first two bits
are assigned.

You should be able to look up the meaning of any codes that
follow the SAE standard online. Here are some example
ranges for common powertrain DTCs:

• P0001–P0099: Fuel and air metering, auxiliary emissions
controls

• P0100–P0199: Fuel and air metering

• P0200–P0299: Fuel and air metering (injector circuit)

• P0300–P0399: Ignition system or misfire

• P0400–P0499: Auxiliary emissions controls

• P0500–P0599: Vehicle speed controls, and idle control
systems

• P0600–P0699: Computer output circuit

• P0700–P0799: Transmission

To learn the meaning of a particular code, pick up a repair
book in the Chilton series at your local auto shop. There,
you’ll find a list of all OBD-II diagnostic codes for your
vehicle.

Reading DTCs with Scan Tools

Mechanics check fault codes with scan tools. Scan tools are
nice to have but not necessary for vehicle hacking. You
should be able to pick one up at any vehicle supply store or
on the Internet for anywhere between $100 and $3,000.

For the cheapest possible solution, you can get an ELM327
device on eBay for around $10. These are typically dongles
that need additional software, such as a mobile app, in order
for them to function fully as scan tools. The software is
usually free or under $5. A basic scan tool should be able to
probe the vehicle’s fault system and report on the common,
nonmanufacturer-specific DTC codes. Higher-end ones
should have manufacturer-specific databases that allow you
to perform much more detailed testing.

Erasing DTCs

DTCs usually erase themselves once the fault no longer
appears during conditions similar to when the fault was first
found. For this purpose, similar is defined as the following:

• Engine speed within 375 RPM of the flagged condition

• Engine load within 10 percent of the flagged condition

• Engine temp is similar

Under normal conditions, once the PCM no longer sees a
fault after three checks, the MIL light turns off and the DTCs
get erased. There are other ways to clear these codes: you
can clear soft DTCs with a scan tool (discussed in the
previous section) or by disconnecting the vehicle’s battery.
Permanent or hard DTCs, however, are stored in NVRAM and
are cleared only when the PCM no longer sees the fault

condition. The reason for this is simple enough: to prevent
mechanics from manually turning off the MIL and clearing
the DTCs when the problem still exists. Permanent DTCs
give mechanics a history of faults so that they’re in a better
position to repair them.

Unified Diagnostic Services

The Unified Diagnostic Services (UDS) is designed to
provide a uniform way to show mechanics what’s going on
with a vehicle without their having to pay huge license fees
for the auto manufacturer’s proprietary CAN bus packet
layouts.

Unfortunately, although UDS was designed to make vehicle
information accessible to even the mom-and-pop mechanic,
the reality is a bit different: CAN packets are sent the same
way but the contents vary for each make, model, and even
year.

Auto manufacturers sell dealers licenses to the details of the
packet contents. In practice, UDS just works as a gateway to
make some but not all of this vehicle information available.
The UDS system does not affect how a vehicle operates; it’s
basically just a read-only view into what’s going on.
However, it’s possible to use UDS to perform more advanced
operations, such as diagnostic tests or firmware
modifications (tests that are only a feature of higher-end

scan tools). Diagnostic tests like these send the system a
request to perform an action, and that request generates
signals, such as other CAN packets, that are used to perform
the work. For instance, a diagnostic tool may make a request
to unlock the car doors, which results in the component
sending a separate CAN signal that actually does the work of
unlocking the doors.

Sending Data with ISO-TP and CAN

Because CAN frames are limited to 8 bytes of data, UDS
uses the ISO-TP protocol to send larger outputs over the
CAN bus. You can still use regular CAN to read or send data,
but the response won’t be complete because ISO-TP allows
chaining of multiple CAN packets.

To test ISO-TP, connect to a CAN network that has
diagnostic-capable modules such as an ECU. Then send a
packet designed for ISO-TP over normal CAN using
SocketCAN’s cansend application:

$ cansend can0 7df#02010d
Replies similar to 7e8 03 41 0d 00

In this listing, 7df is the OBD diagnostic code, 02 is the size
of the packet, 01 is the mode (show current data;
see Appendix B for a list of common modes and PIDs),
and 0d is the service (a vehicle speed of 0 because the

vehicle was stationary). The response adds 0x8 to the ID
(7e8); the next byte is the size of the response. Responses
then add 0x40 to the type of request, which is 0x41 in this
case. Then, the service is repeated and followed by the data
for the service. ISO-TP dictates how to respond to a CAN
packet.

Normal CAN packets use a “fire-and-forget” structure,
meaning they simply send data and don’t wait for a return
packet. ISO-TP specifies a method to receive response data.
Because this response data can’t be sent back using the
same arbitration ID, the receiver returns the response by
adding 0x8 to the ID and noting that the response is a
positive one by adding 0x40 to the request. (If the response
fails, you should see a 0x7F instead of the positive + 0x40
response.)

Table 4-3 lists the most common error responses.

Table 4-3: Common UDS Error Responses

Hex (4th
byte)

Abbreviation Description

10 GR General reject

11 SNS Service not supported

12 SFNS Subfunction not supported

13 IMLOIF Incorrect message length or
invalid format

14 RTL Response too long

21 BRR Busy repeat request

22 CNC Condition not correct

24 RSE Request sequence error

25 NRFSC No response from subnet
component

26 FPEORA Failure prevents execution of
requested action

31 ROOR Request out of range

33 SAD Security access denied

35 IK Invalid key

36 ENOA Exceeded number of attempts

37 RTDNE Required time delay not expired

38-4F RBEDLSD Reserved by extended data link
security document

70 UDNA Upload/download not accepted

71 TDS Transfer data suspended

72 GPF General programming failure

73 WBSC Wrong block sequence counter

78 RCRRP Request correctly received but
response is pending

7E SFNSIAS Subfunction not supported in
active session

7F SNSIAS Service not supported in active
session

For example, if you use service 0x11 to reset the ECU and

the ECU doesn’t support remote resets, you may see traffic
like this:

$ cansend can0 7df#021101
Replies similar to 7e8 03 7F 11 11

In this response, we can see that after 0x7e8, the next byte
is 0x03, which represents the size of the response. The next
byte, 0x7F, represents an error for service 0x11, the third
byte. The final byte, 0x11, represents the error returned—in
this case, service not supported (SNS).

To send or receive something with more than the 8 bytes of
data in a standard CAN packet, use SocketCAN’s ISO-TP
tools. Run istotpsend in one terminal, and then
run isotpsniffer (or isotprecv) in another terminal to see the
response to your istotpsend commands. (Don’t forget
to insmod your can-isotp.ko module, as described
in Chapter 3.)

For example, in one terminal, set up a sniffer like this:

$ isotpsniffer -s 7df -d 7e8 can0

Then, in another terminal, send the request packet via the
command line:

$ echo "09 02" | isotpsend -s 7DF -d 7E8 can0

When using ISO-TP, you need to specify a source and
destination address (ID). In the case of UDS, the source is
0x7df, and the destination (response) is 0x7e8. (When using
ISO-TP tools, the starting 0x in the addresses isn’t
specified.)

In this example, we’re sending a packet containing PID 0x02
with mode 0x09 in order to request the vehicle’s VIN. The
response in the sniffer should display the vehicle’s VIN, as
shown here in the last line of output:

$ isotpsniffer -s 7df -d 7e8 can0
 can0 7DF [2] 09 02 - '..'
 can0 7E8 [20] 49❶ 02❷ 01❸ 31 47 31 5A 54 35 33 38 32
36 46 31 30 39 31 34 39
 - 'I..1G1ZT53826F109149'

The first 3 bytes make up the UDS response. 0x49 ❶ is
service 0x09 + 0x40, which signifies a positive response for
PID 0x02 ❷, the next byte. The third byte, 0x01 ❸, indicates
the number of data items that are being returned (one VIN in
this case). The VIN returned is 1G1ZT53826F109149. Enter
this VIN into Google, and you should see detailed
information about this vehicle, which was taken from an ECU
pulled from a wrecked car found in a junkyard. Table 4-
4 shows the information you should see.

Table 4-4: VIN Information

Model Year Make Body Engine

Malibu 2006 Chevrolet Sedan 4 Door 3.5L V6 OHV 12V

If you were watching this UDS query via a normal CAN
sniffer, you’d have seen several response packets on 0x7e8.
You could re-assemble an ISO-TP packet by hand or with a
simple script, but the ISO-TP tools make things much easier.

NOTE

If you have difficulty running the ISO-TP tools, make sure
you have the proper kernel module compiled and installed
(see “Installing Additional Kernel Modules” on page 42).

Understanding Modes and PIDs

The first byte of the data section in a diagnostic code is the
mode. In automotive manuals, modes start with a $, as in $1.
The $ is used to state that the number is in hex. The mode
$1 is the same as 0x01, $0A is the same as 0x0A, and so on.
I’ve listed a few examples here, and there are more
in Appendix B for reference.

0x01: Shows current data

Shows data streams of a given PID. Sending a PID of 0x00
returns 4 bytes of bit-encoded available PIDs (0x01 through
0x20).

0x02: Shows freeze frame data

Has the same PID values as 0x01, except that the data
returned is from the freeze frame state.

0x03: Shows stored “confirmed” diagnostic trouble
codes

Matches the DTCs mentioned in “DTC Format” on page 52.

0x04: Erases DTCs and clears diagnostic history

Clears the DTC and freeze frame data.

0x07: Shows “pending” diagnostic codes

Displays codes that have shown up once but that haven’t
been confirmed; status pending.

0x08: Controls operations of onboard
component/system

Allows a technician to activate and deactivate the system
actuators manually. System actuators allow drive-by-wire
operations and physically control different devices. These
codes aren’t standard, so a common scan tool won’t be able
to do much with this mode. Dealership scan tools have a lot
more access to vehicle internals and are an interesting target
for hackers to reverse engineer.

0x09: Requests vehicle information

Several pieces of data can be pulled with mode 0x09.

0x0a: Permanent diagnostic codes

This mode pulls DTCs that have been erased via mode 0x04.
These DTCs are cleared only once the PCM has verified the
fault condition is no longer present (see “Erasing DTCs”
on page 54).

Brute-Forcing Diagnostic Modes

Each manufacturer has its own proprietary modes and PIDs,
which you can usually get by digging through “acquired”
dealer software or by using tools or brute force. The easiest
way to do brute force is to use an open source tool called
the CaringCaribou (CC), available
at https://github.com/CaringCaribou/caringcaribou.

CaringCaribou consists of a collection of Python modules
designed to work with SocketCAN. One such module is a
DCM module that deals specifically with discovering
diagnostic services.

To get started with CaringCaribou, create an RC file in your
home directory, ~/.canrc.

[default]

interface = socketcan_ctypes
channel = can0

Set your channel to that of your SocketCAN device. Now, to
discover what diagnostics your vehicle supports, run the
following:

$./cc.py dcm discovery

This will send the tester-present code to every arbitration ID.
Once the tool sees a valid response (0x40+service) or an
error (0x7f), it’ll print the arbitration ID and the reply ID. Here
is an example discovery session using CaringCaribou:

CARING CARIBOU v0.1

Loaded module 'dcm'

Starting diagnostics service discovery
Sending diagnostics Tester Present to 0x0244
Found diagnostics at arbitration ID 0x0244, reply at 0x0644

We see that there’s a diagnostic service responding to
0x0244. Great! Next, we probe the different services on
0x0244:

$./cc.py dcm services 0x0244 0x0644

CARING CARIBOU v0.1

Loaded module 'dcm'

Starting DCM service discovery
Probing service 0xff (16 found)
Done!

Supported service 0x00: Unknown service
Supported service 0x10: DIAGNOSTIC_SESSION_CONTROL
Supported service 0x1a: Unknown service
Supported service 0x00: Unknown service
Supported service 0x23: READ_MEMORY_BY_ADDRESS
Supported service 0x27: SECURITY_ACCESS
Supported service 0x00: Unknown service
Supported service 0x34: REQUEST_DOWNLOAD
Supported service 0x3b: Unknown service
Supported service 0x00: Unknown service
Supported service 0x00: Unknown service
Supported service 0x00: Unknown service
Supported service 0xa5: Unknown service
Supported service 0xa9: Unknown service
Supported service 0xaa: Unknown service
Supported service 0xae: Unknown service

Notice that the output lists several duplicate services for
service 0x00. This is often caused by an error response for
something that’s not a UDS service. For instance, the
requests below 0x0A are legacy modes that don’t respond
to the official UDS protocol.

NOTE

As of this writing, CaringCaribou is in its early stages of
development, and your results may vary. The current version
available doesn’t account for older modes and parses the
response incorrectly, which is why you see several services
with ID 0x00. For now, just ignore those services; they’re
false positives. CaringCaribou’s discovery option stops at
the first arbitration ID that responds to a diagnostic session
control (DSC) request. Restart the scan from where it left off
using the -min option, as follows:

$./cc.py dcm discovery -min 0x245

In our example, the scan will also stop scanning a bit later at
this more common diagnostic ID:

Found diagnostics at arbitration ID 0x07df, reply at 0x07e8

Keeping a Vehicle in a Diagnostic State

When doing certain types of diagnostic operations, it’s
important to keep the vehicle in a diagnostic state because

it’ll be less likely to be interrupted, thereby allowing you to
perform actions that can take several minutes. In order to
keep the vehicle in this state, you need to continuously send
a packet to let the vehicle know that a diagnostic technician
is present.

These simple scripts will keep the car in a diagnostic state
that’ll prove useful for flashing ROMs or brute-forcing. The
tester present packet keeps the car in a diagnostic state. It
works as a heartbeat, so you’ll need to transmit it every one
to two seconds, as shown here:

#!/bin/sh
while :
do
 cansend can0 7df#013e
 sleep 1
done

You can do the same things with cangen:

$ cangen -g 1000 -I 7DF -D 013E -L 2 can0

NOTE

As of this writing, cangen doesn’t always work on serial-line
CAN devices. One possible workaround is to tell slcand to
use canX style names instead of slcanX.

Use the ReadDataByID command to read data by ID and to
query devices for information. 0x01 is the standard query.
The enhanced version, 0x22, can return information not
available with standard OBD tools.

Use the SecurityAccess command (0x27) to access
protected information. This can be a rolling key, meaning
that the password or key changes each time, but the
important thing is that the controller responds if successful.
For example, if you send the key 0x1, and it’s the correct
access code, then you should receive an 0x2 in return. Some
actions, such as flashing ROMs, will require you to send
a SecurityAccess request. If you don’t have the algorithm to
generate the necessary challenge response, then you’ll need
to brute-force the key.

Event Data Recorder Logging

You likely know that airplanes have black boxes that record
information about flights as well as conversations in the
cockpit and over radio transmissions. All 2015 and newer
vehicles are also required to have a type of black box, known
as an event data recorder (EDR), but EDRs record only a
portion of the information that a black box on an airplane
would. The information stored on the EDR includes the
following (you’ll find a more complete list in SAE J1698-2):

• Airbag deployment

• Brake status

• Delta-v (longitudinal change in velocity)

• Ignition cycles

• Seat belt status

• Steering angles

• Throttle position

• Vehicle speed

While this data is very similar to freeze frame data, its
purpose is to collect and store information during a crash.
The EDR constantly stores information, typically only about
20 seconds worth at any one time. This information was
originally stored in a vehicle’s airbag control module (ACM),
but today’s vehicles distribute this data among the vehicle’s
ECUs. These boxes collect data from other ECUs and
sensors and store them for recovery after a crash. Figure 4-
1 shows a typical EDR.

Figure 4-1: A typical event data recorder

Reading Data from the EDR

The official way to read data from an EDR is with a crash
data retrieval (CDR) tool kit. A basic CDR tool will connect to
the OBD connector and pull data (or image the vehicle) from
the main ECU. CDR tools can also access data in other
modules, such as the ACM or the rollover sensor (ROS)
module, but they’ll normally need to be plugged in directly to
those devices instead of using the OBD port. (You’ll find a

comprehensive list of which vehicles have black box data
that can be retrieved
here: http://www.crashdatagroup.com/research/vehiclecove
rage.html.)

CDR kits include both proprietary hardware and software.
The hardware usually costs about $2,000, and the cost of
the software will vary depending on how many vehicle types
you want to support. The format of vehicle crash data is
often considered proprietary as well, and many
manufacturers license the communication protocol to tool
providers that make CDRs. Obviously, this is not in the best
interest of the consumer. The National Highway Traffic
Safety Administration (NHTSA) has proposed the adoption
of a standard OBD communication method to access this
data.

The SAE J1698 Standard

The SAE J1698 standard lists recommended practices for
event data collection and defines event records by sample
rate: high, low, and static. High samples are data recorded at
the crash event, low samples are pre-crash data, and static
samples are data that doesn’t change. Many vehicles are
influenced by the SAE J1698 but don’t necessarily conform
to its rules for all data retrieved from a vehicle.

Some recorded elements are:

• Cruise control status

• Driver controls: parking brake, headlight, front wiper, gear
selection, passenger airbag disabled switch

• Foremost seat track position

• Hours in operation

• Indicator status lights: VEDI, SRS, PAD, TPMS, ENG, DOOR,
IOD

• Latitude and longitude

• Seating position

• SRS deployment status/time

• Temperature air/cabin

• Vehicle mileage

• VIN

While the SAE J1698 states latitude and longitude
recordings, many manufacturers claim not to record this
information for privacy reasons. Your research may vary.

Other Data Retrieval Practices

Not all manufacturers conform the to SAE J1698 standard.

For example, since the 1990s, General Motors has collected
a small amount of EDR data in the sensing and diagnostic
module (SDM) of its vehicles. The SDM stores the vehicle’s
Delta-v, which is the longitudinal change in the vehicle’s
velocity. The SDM does not record any post-crash
information.

Another example is Ford’s EDR, known as the restraint
control module (RCM). Ford stores a vehicle’s longitudinal
and lateral acceleration data rather than Delta-v. If the
vehicle has electronic throttle control, the PCM stores
additional EDR data, including whether the passenger was
an adult or not, the percent the accelerator/brake pedal was
depressed, and whether a diagnostic code was active when
the crash occurred.

Automated Crash Notification Systems

Automated crash notification (ACN) systems are the phone-
home systems that contact a vehicle’s manufacturer or a
third party with event information. These coincide with other
crash recovery systems and extend the functionality by
contacting the manufacturer or third party. One major
difference is that there aren’t rules or standards that
determine what data is collected and sent to an ACN. ACNs
are specific to each manufacturer, and each system will send
different information. For example, the Veridian automated
collision notification system (released in 2001) reports this

information:

• Crash type (frontal, side, rear)

• Date and time

• Delta-v

• Longitude and latitude

• Make, model, and year of vehicle

• Principal direction of force

• Probable number of occupants

• Rollover (yes or no)

• Seat belt use

• Vehicle’s final resting position (normal, left side, right side,
roof)

Malicious Intent

Attackers may target a vehicle’s DTCs and freeze frame data
to hide malicious activity. For example, if an exploit needs to
take advantage of only a brief, temporary condition in order
to succeed, a vehicle’s freeze frame data will most likely
miss the event due to delays in recording. Captured freeze
frame snapshots rarely contain information that would help

determine whether the DTC was triggered by malicious
intent. (Because black box EDR systems typically trigger
only during a crash, it’s unlikely that an attacker would target
them because they’re not likely to contain useful data.)

An attacker fuzzing a vehicle’s system might check for fired
DTCs and use the information contained in a DTC to
determine which component was affected. This type of
attack would most likely occur during the research phase of
an attack (when an attacker is trying to determine what
components the randomly generated packets were
affecting), not during an active exploit.

Accessing and fuzzing manufacturer-specific PIDs—by
flashing firmware or using mode 0x08—can lead to
interesting results. Because each manufacturer interface is
kept secret, it’s difficult to assess the actual risk of the
network. Unfortunately, security professionals will need to
reverse or fuzz these proprietary interfaces to determine
what is exposed before work can be done to determine
whether there are vulnerabilities. Malicious actors will need
to do the same thing, although they won’t be motivated to
share their findings. If they can keep undocumented entry
points and weaknesses a secret, then their exploit will last
longer without being detected. Having secret interfaces into
the vehicle doesn’t increase security; the vulnerabilities are
there regardless of whether people are allowed to discuss

them. Because there’s money in selling these codes
(sometimes upward of $50,000), the industry has little
incentive to embrace the community.

Summary

In this chapter, you have gone beyond traditional CAN
packets to understand more complex protocols such as ISO-
TP. You have learned how CAN packets can be linked
together to write larger messages or to create two-
directional communications over CAN. You also learned how
to read and clear any DTCs. You looked at how to find
undocumented diagnostic services and saw what types of
data are recorded about you and your driving habits. You
also explored some ways in which diagnostic services can
be used by malicious parties.

