
The Car Hacker's Handbook:
A Guide for the Penetration
Tester - Craig Smith (2016)
Chapter 6. ECU HACKING

by Dave Blundell

A vehicle typically has as many as a dozen or more
electronic controllers, many of which are networked to
communicate with each other. These computerized devices
go by many different names, including electronic control
unit or engine control unit (ECU), transmission control unit
(TCU), or transmission control module (TCM).

While these terms may have specific meanings in a formal

setting, similar terms are often used interchangeably in
practice. What may be a TCU to one manufacturer is a TCM
to another, yet both electronic controllers perform the same
or extremely similar functions.

Most automotive control modules have measures in place to
prevent you from altering their code and operation; these
range from very strong to laughably weak. You won’t know
what you’re dealing with until you investigate a particular
system. In this chapter, we’ll take a closer look at particular
security mechanisms, but first we’ll examine strategies for
gaining access to these systems. Then in Chapter 8 we’ll
look at some more specific ECU hacks, like glitch attacks
and debugging. The attack vectors for ECUs fall into three
different classes:

Front door attacks Commandeering the access mechanism
of the original equipment manufacturer (OEM)

Backdoor attacks Applying more traditional hardware-
hacking approaches

Exploits Discovering unintentional access mechanisms

We’ll look at an overview of these attack classes, and then
analyze the data you find. It’s worth remembering that while
the goal for ECU and other control module hacking is often
the same—to gain access in order to reprogram and change

behavior—it’s unlikely there’ll be a “master key” for all
controllers. However, OEMs are generally not very creative
and seldom change their ways, so insight into one controller
likely applies to similar models from the same manufacturer.
Also, few of today’s auto manufacturers develop their own
automotive computers from scratch, instead licensing
prefabricated solutions from third parties like Denso, Bosch,
Continental, and others. Because of this design
methodology, it’s relatively common to see vehicles from
different auto manufacturers using very similar computer
systems sourced from the same vendors.

Front Door Attacks

The OBD-II standard mandates that you be able to
reprogram vehicles through the OBD-II connector, and
reverse engineering the original method for programming is
a guaranteed attack vector. We’ll examine J2534 and
KWP2000 as examples of common protocols for
programming.

J2534: The Standardized Vehicle Communication API

The SAE J2534-1 standard, or simply J2534, was developed
to promote interoperability among digital tool vendors
through the use of the J2534 API, which outlines the
recommended way for Microsoft Windows to communicate
with a vehicle. (You can purchase the J2534 API from the

SAE at http://standards.sae.org/j2534/1_200412/.) Prior to
the adoption of the J2534 standard, each software vendor
created its own proprietary hardware and drivers for
communicating with a vehicle in order to perform
computerized repairs. Because these proprietary tools
weren’t always available to smaller shops, the EPA mandated
the adoption of the J2534 standard in 2004 to allow
independent shops access to the same specialized
computer tools used by dealerships. J2534 introduced a
series of DLLs that map standard API calls to instructions
necessary to communicate with a vehicle, thereby allowing
multiple manufacturers to release software designed to work
with J2534-compatible hardware.

Using J2534 Tools

J2534 tools provide a convenient way to observe OEM tools
interacting with vehicle computers. Manufacturers often
leverage J2534 to update computer firmware and
sometimes to provide powerful diagnostic software. By
observing and capturing information exchanged with a
vehicle using J2534, you can see how OEMs perform certain
tasks, which may provide you with information that you need
to unlock the “front door.”

When using J2534 tools to attack vehicle systems, the basic
idea is to observe, record, analyze, and extend functionality.
Of course, the first step is to obtain and configure a J2534

application and its corresponding interface hardware in order
to perform a task you want to observe. Once you have your
setup, the next step is to observe and record
communications with the target while using the J2534 tools
to perform an action on the target, like updating a
configuration parameter.

There are two primary ways to observe J2534 transactions:
by watching J2534 API calls on a PC using J2534 shim DLLs
or by watching actual bus traffic using a separate sniffer tool
to capture data.

J2534 tools are key to eavesdropping on the protocols built
into the factory embedded vehicle systems, and they’re one
of the primary ways to attack the front door. Successful
analysis of this communication will give you the knowledge
you need to access vehicle systems the way the OEMs do.
It’ll also allow you to write applications with full access to
read and reprogram systems, which will in turn enable you to
communicate directly with a vehicle without having to use
the J2534 interface or the OEM’s J2534 software.

J2534 Shim DLLs

The J2534 shim is a software J2534 interface that connects
to a physical J2534 interface and then passes along and
logs all commands that it receives. This dummy interface is a
kind of man-in-the-middle attack that allows you to record

all API calls between the J2534 application and the target.
You can then examine the log of commands to determine the
actual data exchanged between the J2534 interface and the
device.

To find an open source J2534 shim,
search code.google.com for J2534-logger. You should also
be able to find precompiled binaries.

J2534 with a Sniffer

You can also use J2534 to generate interesting traffic that
you can then observe and record with a third party sniffer.
There’s no magic here: this is just an excellent example of
how to generate juicy packets that might otherwise be
difficult to capture. (See Chapter 5 for more information on
monitoring network traffic.)

KWP2000 and Other Earlier Protocols

Before J2534, there were many flash-programmable ECUs
and other control units, such as the Keyword Protocol 2000
(KWP2000 or ISO14230). From an OSI networking
perspective, it’s primarily an application protocol. It can be
used on top of CAN or ISO9141 as the physical layer. You’ll
find a huge number of KWP2000 flasher tools that interface
with a PC using a serial/ USB-serial interface and that
support diagnostics and flashing using this protocol just by

searching online. (For more on the Keyword Protocol 2000,
see Chapter 2.)

Capitalizing on Front Door Approaches: Seed-Key
Algorithms

Now that we’ve discussed how legitimate tools use the front
door, it’s time to capitalize on this attack vector by learning
how to operate the figurative “lock on the gate.” To do this,
we must understand the algorithm that the embedded
controller uses to authenticate valid users; this is almost
always a seed-key algorithm. Seed-key algorithms usually
generate a pseudorandom seed and expect a particular
response, or key, for each seed before allowing access. A
typical valid exchange could look something like this:

ECU seed: 01 C3 45 22 84
Tool key: 02 3C 54 22 48

or this:

ECU seed: 04 57
Tool key: 05 58

Unfortunately, there’s no standard seed-key algorithm. You
might have a 16-bit seed and 16-bit key, a 32-bit seed and
16-bit key, or a 32-bit seed and 32-bit key. The algorithm
that generates a key from a given seed also varies from
platform to platform. Most algorithms are a combination of

simple arithmetic operations and one or more values used as
part of the computation. There are several techniques for
figuring out these algorithms in order to give you access to
the ECU:

• Obtain the firmware for the device in question through
other means. Disassemble it and analyze the embedded
code to find the code responsible for generating seed-key
pairs.

• Obtain a legitimate software tool—for example, J2534
reflash software—that’s capable of generating legitimate
seed-key pairs, and analyze the PC application code with a
disassembler to determine the algorithm used.

• Observe a legitimate tool exchanging keys, and analyze the
pairs for patterns.

• Create a device to spoof a legitimate tool into providing
responses repeatedly. The main advantage of this method
over purely passive observation is that it allows you to pick
seeds for which you can reproduce the keys.

You can find more information about reverse engineering the
seed-key algorithms used by General Motors
at http://pcmhacking.net/forums/viewtopic.php?
f=4&t=1566&start=10, and those used by VAG MED9.1
at http://nefariousmotorsports.com/forum/index.php?

topic=4983.0.

Backdoor Attacks

Sometimes front door attacks are too tricky; you may not
have the right tools or the lock might be too hard to figure
out. Don’t despair—remember that automotive control
modules are embedded systems, so you can use all the
usual hardware-hacking approaches. In fact, using more
direct-to-hardware backdoor approaches often makes more
sense than trying to reverse engineer the front door lock
placed by the factory, especially when trying to reprogram
engine modules. If you can obtain a dump of the module, you
can often disassemble and analyze it to figure out how the
keys to the front door work. The first step in a hardware
backdoor attack is analyzing the circuit board.

When reversing a circuit board of any system, you should
start with the largest chips first. These larger processor and
memory chips are likely to be the most complex. It’s a good
idea to make a list of part numbers to feed to
Google, datasheet.com, or something similar, to obtain a
copy of the data sheet. You’ll sometimes encounter custom
application-specific integrated circuits (ASICs) and one-off
chips, especially with older ECUs, which will prove more
difficult than off-the-shelf parts. In many cases, you’ll have
to infer the function of these parts based on how they’re
connected to identifiable parts.

It’s critical to look out for memory chips—SRAM, EEPROM,
FlashROM, one-time-programmable ROM, serial EEPROM,
serial flash, NVSRAM, and so on. The type of memory used
varies immensely from one platform to another; every single
variety listed here has been found in the wild. Newer designs
are less likely to have parallel memories and more likely to
have serial chips. Newer microcontrollers are less likely to
have any external memories at all, as their internal flash
capacities have dramatically increased. Any nonvolatile
memory chip present can be removed from the circuit board,
read, and then replaced. Chapter 8 goes into much more
detail on reverse engineering the circuit board.

Exploits

Although arguably just another example of a backdoor
approach, exploits deserve special attention. Rather than
taking apart a computer, exploits involve feeding a system
carefully crafted inputs to make it do things outside normal
operation. Typically, exploits build on a bug or problem. This
bug might cause a system to crash, reboot, or perform some
undesirable behavior from the perspective of the vehicle
user. Some of these bugs present the opportunity for buffer
overflow attacks, which open the door for commandeering
the vulnerable device merely by feeding it
unexpected inputs. A cleverly crafted set of inputs triggers
the bug, which then makes the device execute arbitrary

code provided by the attacker instead of triggering the usual
fault condition.

Not all bugs can be turned into exploits, however—some
bugs only cause problems or shut down core systems. And
while bugs are usually discovered by accident, most exploits
require careful craft. It is unlikely that you’d be able to turn a
known bug into an exploit without also having prior
knowledge of the system, usually gained from firmware
analysis. At a bare minimum, you’d need basic knowledge of
the architecture in order to write the necessary code. Most
of the time, this knowledge needs to be gathered through
research prior to writing an exploit.

It’s hard to find bugs that make suitable attack vectors and
it’s often just as difficult to write exploits for them, so
exploits that build on bugs are fairly uncommon. While it is
foolish to discount the relevance of exploits, the other
methods presented here and in Chapter 8 are much more
practical paths to understanding and reprogramming
automotive systems in most cases.

Reversing Automotive Firmware

Hacking into an automotive control module far enough to
retrieve its current firmware and configuration is really just
the beginning of the adventure. At this point, you probably
have anywhere from 4KB to 4MB of raw machine-ready

code, with a mixture of various parameters and actual code
that forms the program the processor will run. Let’s say you
have a binary blob in the firmware from one of the hacks in
this chapter or the chapters later in this book. Next you need
to disassemble the binary.

First, you must know which chip this binary is for. There are
several free decompilers for different chips out on the
Internet. Otherwise you can drop some cash and buy IDA
Pro, which supports a large variety of chips. These tools will
convert the hex values in the binary into assembler
instructions. The next stage is to figure out what exactly you
are looking at.

When you’re starting to analyze raw data, a high-level
understanding of the function of the devices you’re reverse
engineering will be key to knowing what to look for. You can
follow a number of breadcrumbs, or clues, for starters; these
breadcrumbs are almost guaranteed to lead you to
interesting and useful material. Next, we’ll look at a few
specific examples of how to use common automotive
controller functions to gain insight into their operation, which
will hopefully allow us to change their behavior.

Self-Diagnostic System

Every engine controller has some type of self-diagnostic
system that typically monitors most critical engine functions,

and analyzing this is an excellent route to understanding
firmware. A good first step in investigative disassembly is to
identify the location of these procedures. This will provide
you with insight into the memory locations involved in all of
the sensors and functions that are checked for errors. Any
modern vehicle should support OBD-II packets, which
standardize the diagnostic data reported. Even controllers
created prior to OBD-II standards have a way to report faults.
Some have a system where an analog input is shorted to
ground and either an internal LED or the “check engine” light
flashes out the code. For example, knowing that code 10
refers to a failed intake air temperature sensor means you
can find the piece of code that sets error code 10 to help you
identify the internal variables associated with the air
temperature sensor.

For more detailed information on using diagnostics,
see Chapter 4.

Library Procedures

Being able to change the behavior of a control unit is often
one of the primary goals of reverse engineering ECU
firmware, and identifying data used by a controller is an
important step in the process. Most ECUs have a set of
library functions used for routine tasks throughout the code.
Library functions used for table lookups are worth identifying
early on in the reverse engineering process, as these can

lead straight to the parameters you’re interested in. Each
time a table is used, a function is called to fetch a result.
Calls to this type of function are among the most frequent,
making them easy to spot.

Usually each type of data stored within the ECU—one-
dimensional array of bytes; two-dimensional array of words;
three-dimensional array of unsigned, signed, and float
shorts; and so on—has a unique reference function. When
called, each table lookup routine needs to be passed, at a
minimum, the table index (or start address) and the axis
variables. Often, table lookup routines can be reused to pass
information about the structure of the table, such as how
many rows and columns are present.

Calibration data is usually stored in program memory, along
with the routines accessing them. Microcontrollers typically
have special instructions to access program memory, which
provide a unique signature to search for and make table
lookup routines particularly easy to spot. A secondary
characteristic of these lookup routines is that they tend to
have lots of interpolation math. In addition, table lookup
routines are often grouped closely together in program
memory, making it even easier to find others after you’ve
found one. After identifying reference routines, searching for
all calls to them can provide a key to identifying the vast
majority of data used by the controller to make decisions.

The arguments passed to these functions typically include
the start address of a table, its structure or shape, and which
variables index elements of the table. Armed with this
information, you’re much closer to being able to change the
behavior of the controller.

Finding Known Tables

One way to identify tables is to leverage the specific physical
and electrical characteristics of vehicle sensors, which will
display identifiable characteristics within ECU firmware. For
example, an ECU with a MAF sensor will have a table that
translates raw readings of voltage or frequency from the
MAF into airflow into the engine, providing an internal
representation.

Fortunately for us, the signal output from an MAF is
determined by physics—that is, King’s Law—so the curve will
always have a characteristic shape, though it’ll be slightly
different for each sensor. This will result in the tables having
a characteristic set of values that can be observed in the
ROM. Armed with the knowledge that there will be universal
data to identify, let’s take a closer look at how calibration
data is displayed in different programs.

Figures 6-1 and 6-2 show similarly shaped Ford and Nissan
sensor curves; the similarity they illustrate extends to
multiple manufacturers.

Figure 6-1: Ford MAF transfer graph

Figure 6-2: Nissan MAF VQ graph

Figures 6-2 through 6-6 show five different views of the
same data. Figure 6-3 shows how the VQ curve pictured
in Figure 6-2 would look in a hex editor.

Figure 6-3: VQ table in HxD hex editor: 128 bytes or 64- to

16-bit words

Figures 6-4 and 6-5 show the VQ table in analyze.exe
available from https://github.com/blundar/analyze.exe/. A
simple visualization tool, analyze.exe colors cells based on
their numeric value. You can select the precision of the data
—for example, 1 = 8-bit byte, 2 = 16-bit word, and 4 = 32-bit
long—and how many rows and columns you want present.
This simple visual arrangement often makes it easier to
identify what is code and what is data than it is when you’re
using a hex editor, as in Figure 6-3.

Figure 6-4: VQ table in analyze.exe: values from 48 to
65535 in first four rows of 16×16-bit values

Figure 6-5: First four rows of 16x16-bit values

Look again at the first four rows of 16×16-bit values
in Figures 6-4 and 6-5 shaded in analyze.exe. Notice how
the smooth nonlinear curve in Figures 6-1 and 6-2 mimics
the smooth nonlinear progression of values. Figure 6-
6 shows the same values in a 64-column layout, so you can
see the full gradient of the first four rows from Figure 6-5.
No matter what type of vehicle you’re looking at, the overall
data structures will be similar.

Figure 6-6: 64- to 16-bit words per row

Data visualization tools like hex editors or analyze.exe can
also be useful when you don’t know the exact shape or
pattern you are looking for. No matter what type of vehicle
you’re looking at, data structures will have orders and
patterns that are not typically seen in executable
code. Figure 6-7 shows an example of the clear visual
pattern of data in analyze.exe—gradually changing values
and repetition should stand out.

Figure 6-7: Patterns and gradual changes in table data
appear in a 2002 Chevrolet Camaro ROM visualized with
analyze.exe

On the other hand, when you look at code like that in Figure
6-8, there is a more random, chaotic appearance. (In Figures
6-7 and 6-8, precision is set to 2 because the
microcontroller unit used is a 16-bit processor and it’s
reasonable to assume that a good chunk of the data items
will be 16-bit as well.)

Figure 6-8: This random code doesn’t have the neat, orderly
patterns that are present in most tables.

More to Learn from the MCU

Hopefully, these examples help connect knowledge of the
table data you expect to find with their representation within
a binary blob. Learning the capabilities of the microcontroller

unit (MCU) used in a target system can shed light on the
types of data to expect when looking over the binary data.

Generally, data representation formats are dictated by the
hardware present. Knowing the size of registers on the MCU
running the show can be a big help for identifying
parameters. Most parameters tend to be the same size as or
smaller than the registers of a given MCU. An 8-bit MCU, like
a 68HC11, is likely to have lots of 8-bit data. It’s unusual to
see mostly 4-byte, or 32-bit, unsigned long integers on an
8-bit MCU. While 16-bit data becomes more common on
MCUs like the 68332, 32-bit data becomes the norm with
MPC5xx Power Architecture MCUs and so on. It’s unusual to
find floating-point data on an MCU that lacks a floating-point
processor.

Comparing Bytes to Identify Parameters

It’s often possible to get multiple bins that’ll run on the same
physical ECU. The more the better! Doing a simple compare
in a hex editor will show which bytes differ between the files.
It’s common—but not guaranteed—for code to remain
unchanged while parameters change. If less than 5 percent
of the files differ, it’s generally safe to assume that the
differences are parameters. If you know what’s been
changed functionally between the two bins and you know
which bytes have changed, you have further clues to help
correlate changes in the ROM with changes in parameters.

Figures 6-9 and 6-10 compare a 1996 V8 Mustang and a
1997 V6 Thunderbird, showing 6,667 differences out of
114,688 bytes. This is an extreme example of having the
same code with different parameters, but there’s still only
about a 5.8 percent difference compared to overall file size.

Most processors use an interrupt vector table defined by the
processor being used. Referencing the processor’s data
sheet will define the structure of interrupt routines, allowing
you to quickly identify the interrupt handlers. Tracing
interrupt pins on the processor to circuitry within the ECU to
pins you can reference in a vehicle wiring diagram can help
you identify code blocks used to service such hardware
functions as fuel and spark control, crank and cam signal
processing, and idle functions.

Figure 6-9: Comparison of a 1996 V8
Mustang (DXE2.bin) and a 1997 V6 Thunderbird (SPP3.bin)

Figure 6-10: File compare function of the HxD hex editor

Identifying ROM Data with WinOLS

WinOLS is a popular commercial program for modifying bins.
It combines a series of tools for calculating and updating

checksums within a ROM with a set of tools for identifying
tables. Figures 6-11 and 6-12 illustrate WinOLS in use.

If the ROM type is known, it has many templates that
automatically identify configuration parameters. Most of the
known built-in ROM types are geared toward Bosch
Motronic ECUs. Templates and configurations can be saved,
shared, and sold to enable users to make modifications to
specific files with greater ease. WinOLS is arguably the most
common software used for identifying interesting data within
a ROM that doesn’t involve code analysis. It’s designed to
facilitate rapid tuning changes to a controller.

Figure 6-11: WinOLS supports 2D and 3D table views, as
shown in these alternate views.

Figure 6-12: WinOLS being used on a 2006 Volkswagen
2.0Tsi ECU

Code Analysis

Code analysis can be a long, complicated task. If you’re
starting from scratch, with no experience, it will likely take
hundreds of hours to analyze a complex piece of code.
Modern control units often have upward of a megabyte or
two of code, which is a huge amount of code when you’re
looking at it in assembly. An ECU from 1995 with 32
kilobytes (not megabytes) of code will have upward of
10,000 assembly instructions to sort out. Bottom line: do not
underestimate how much work this approach will take. I’ll
briefly introduce a few tools, but I don’t have the space to
address the topic in sufficient depth for someone unfamiliar

with the process. (After all, entire books have been written
solely on code analysis.) Here, I’ll just talk through specific
tools and methods particularly applicable to automotive
embedded systems.

When analyzing a new target, first identify the architecture
you’re working with. Knowing what processor executed the
blob of binary will help you choose an appropriate software
tool to further assist. If you can’t identify a processor based
on the markings on the chip itself, search online for data
sheets to identify it.

To analyze code, you might need to find a disassembler. A
quick Google search reveals that there are lots of them out
there. Some target a single architecture—for example, Dis51
—and some are custom-written for automotive reverse
engineering—for example, Dis66k. Others, like CATS dasm,
IDA Pro, Hopper, dasmx, and objdump from the GNU Binary
Utilities (binutils), target multiple processors. IDA Pro
supports more embedded targets than just about any other
program, but it’s also one of the most expensive
disassemblers. GNU binutils also supports a pretty wide
range of architectures, but the version included on most
systems will be built only for the “native” architecture.
Rebuilding binutils with all architectures enabled will open a
few doors. Your budget and supported processors will
determine which disassemblers are an option.

Bust out the disassembly tools and start trying to make
sense of the mess, but as I warned earlier, this might take
hundreds of hours. A divide-and-conquer mentality works
best—focus on the smaller tasks rather than the project as a
whole. If you obtained the binary by backdoor methods, you
probably already took the ECU apart to identify the
processor. If you cracked the J2534 programming routines,
you might not have a clue what processor is running the
show. In this case, you’re going to need to keep running it
through a disassembler over and over using different
settings until you get something that makes sense.

You’re looking for assembly code that disassembles cleanly,
meaning that it looks like it makes logical sense. If you
disassemble a binary for the wrong architecture or using the
wrong settings, you’ll still see assembly instructions, but the
assembler actions won’t make sense. Disassembly is a bit of
an art, and it may take a little practice at seeing a “clean”
assembler to get the hang of identifying when a
dissassembler is providing the correct response, especially
when nonexecutable tables and data are scattered among
the code.

Here are some hints for making sense of disassembled code:

• OEMs love to patent stuff. If you can find the patents
relevant to your system, you may end up with a guided tour
of the code being disassembled. This is probably the most

consistently available high-level procedural guide to help
you understand the logic in an automotive computer. Patents
usually lead production by at least one to two years, if not
more.

• Look at any available software for manipulating the ECU at
hand for insight into the structure and purpose of code
segments. You can often infer a model of behavior from
tables available to be modified in aftermarket software.

• Otherwise, start with a wiring diagram for the vehicle, and
trace connections back through ECU circuitry to particular
pins on the MCU. This should tell you which piece of MCU
hardware handles which function. Cross reference the
interrupt tables, or look for calls to service particular pieces
of hardware in order to identify which piece(s) of code
service that hardware function.

A plain, or old-style, disassembler will output very verbose
text. Each individual instruction is parsed. Some
disassemblers will attempt to mark areas referenced as data
and void disassembling them. Other disassemblers need to
be specifically told which areas are code and which areas
are data.

A Plain Disassembler at Work

To see disassembly in action, we’ll look at a plain

disassembly of a 1990 Nissan 300ZX Twin Turbo ROM. This
ECU has a 28-pin external 27C256 EPROM, so it’s relatively
easy to obtain its contents. This particular platform uses a
HD6303 MCU, a derivative of the Motorola 6800 8-bit MCU
that appears to be supported by the free disassembler
DASMx
(see http://www.16paws.com/ECU/DASMxx/DASMx.htm).
DASMx comes with minimal instructions: to
disassemble foo.bin, create a file, foo.sym, that describes
which platform is in use, and then create an entry point in
memory to place the image, symbols you know about, and
so on. Time for a crash course in the architecture!

A critical point about the memory structure is that the MCU
can address 65535 bytes (64KB). This information tells you
what to expect when looking at the addresses in your binary
blob. Further reading suggests that the interrupt vector table
lies at the end of addressable memory, with the reset vector
—where every processor starts after a reset—at
0xFFFE/0xFFFF. Assuming that the 32KB (0x7FFF hex)
binary blob we have from reading the EPROM contains the
interrupt vector table, we can figure out that the binary
image needs to start at memory address 0x8000 for it to
end at 0xFFFF (0xFFFF – 0x7FFF = 0x8000). It also helps to
search online to see whether others are trying to do
something similar. For example, the post
at http://forum.nistune.com/viewtopic.php?f=2&t=417 is for

a smaller 16KB binary based on settings for a 0xC000 entry
point. The more legwork and research you do prior to
actually invoking a disassembler, the more likely you are to
get reasonable results.

Figure 6-13 shows the symbol table for the 300ZX binary.
Next to each symbol is the memory address used by the
firmware. These memory addresses can hold values such as
incoming data from different physical pins on the chip or
internal information, like timing.

Figure 6-13: Symbol file for 32KB 300ZX binary disassembly
with DASMx

We’ll use DASMx to disassemble the binary. As shown
in Figure 6-14, DASMx reports a Hitachi 6303 MCU with a
source file length, or size, of 32KB, which is 32768 bytes.

Figure 6-14: Running DASMx to disassemble 32KB 300ZX
binary

Now cross your fingers and hope for a meaningful result!

The result is the vector table shown in Figure 6-15, which
looks sane enough: all addresses are above the 0x8000
entry point specified. Notice that the reset vector
(0xFFFE, RES-vector) has a pointer to the RESET_entry at
0xBE6D.

Figure 6-15: Disassembled vector table

We can disassemble the code at 0xBE6D for the reset
vector, which is also the entry point for code. In Figure 6-16,
we see a routine, RESET_entry, that looks like it wipes a
chunk of RAM. This is a plausible part of the initial reset
sequence because often when booting, firmware will
initialize the data region to all 0s.

Figure 6-16: Reset vector disassembly

We’ve taken this example as far as obtaining a disassembled
binary image and looking for basic sanity. Now, for the hard
part: following the code, breaking it into routines, and trying
to figure out how it works.

Interactive Disassemblers

As of this writing, IDA Pro is the most popular interactive
disassembler available. It performs the same tasks as the
simple disassembler just discussed, and more. Specifically,
IDA Pro names registers and variables; once IDA Pro
identifies and names a variable, or memory address—for
instance, $FC50–RPM—it gives all references to that variable
within the code a descriptive name rather than a less-

recognizable plain hex address. IDA Pro also graphs code to
visualize program flow.

One of the advantages of IDA Pro is that it’s programmable
to allow additional opcodes for customizing automotive
processors and plugins for further processing disassembled
code (for example, decompiling assembly into higher
language code); it also lets you use structs, unions, classes,
and other user-defined data types.

Lastly, IDA Pro supports more embedded platforms out of
the box than just about any other disassembler currently
available.

You don’t necessarily need these functions to successfully
analyze code, but they make things substantially
easier. Figures 6-17 and 6-18 are screenshots from real code
analysis with IDA Pro. Thanks to Matt Wallace for graciously
posting these examples in a public forum.

The user in Figure 6-18 obtained Acura NSX ECU firmware
through a combination of hardware-hacking approaches,
took the code apart, analyzed it using IDA Pro, and rewrote
it. Next, the user determined the necessary functions to log
data from the ECU and alter its operation. The result allowed
the user to use forced induction—that is, turbochargers and
superchargers—with a factory computer; this would have
been impossible without ECU modification.

Figure 6-17: IDA diagram showing a custom-written routine
for NVRAM real-time programming

Figure 6-18: IDA diagram of code for checking fuel injectors
on NSX ECU

Summary

Because hacking on the ECU often involves processors that
are smaller than those used in more powerful modern
devices, such as cell phones, the tools used for reversing the
firmware differ for each target. By using a combination of
techniques, such as data visualization to locate tables, and
by reversing the firmware directly, you can identify the areas
you’re interested in modifying. The methods discussed in
this chapter are techniques commonly used by performance
tuners to adjust how a vehicle handles fuel efficiency. All can
be used to unlock features hidden in the code of your
vehicle. We’ll look at performance tuning in more detail
in Chapter 13.

