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Chapter 9. IN-VEHICLE INFOTAINMENT
SYSTEMS

In-vehicle infotainment (IVI) system is the name often given
to the touchscreen interface in a car’s center console. These
consoles often run an operating system such as Windows
CE, Linux, QNX, or Green Hills and may even run Android in a
VM as well. They can support numerous features with
varying levels of integration with the vehicle.

The IVI system offers more remote attack surfaces than any
other vehicle component. In this chapter, you’ll learn how to



analyze and identify an IVI unit, how to determine how it
works, and how to overcome potential hurdles. Once you
understand your IVI system, you’ll have gained a great deal
of insight into how your target vehicle works. Gaining access
to the IVI system will not only allow you to modify the IVI
itself but also will open a door to additional information about
how your vehicle works, such as how it routes CAN bus
packets and updates the ECU. Understanding the IVI system
can also provide insight into whether the system phones
home to the manufacturer; if it does, you can use access to
the IVI to see what data is being collected and potentially
transmitted back to the manufacturer.

Attack Surfaces

IVI systems typically have one or more of these physical
inputs that you can use to communicate with a vehicle:

Auxiliary jack

• CD-ROM

• DVD

• Touchscreen, knobs or buttons, and other physical input
methods

• USB ports



One or more wireless inputs

• Bluetooth

• Cellular connection

• Digital radio (such as Digital Audio Broadcasting)

• GPS

• Wi-Fi

• XM Radio

Internal network controls

• Bus networks (CAN, LIN, KWP, K-Line, and so on)

• Ethernet

• High-speed media bus

Vehicles often use CAN to communicate with their
components, such as modules, ECUs, IVI systems, and
telematic units. Some IVI systems use Ethernet to
communicate between high-speed devices, whether to send
normal IP traffic or CAN packets using Electronic System
Design’s NTCAN or the Ethernet low-level socket interface
(ELLSI). (For more on vehicle protocols, see Chapter 2.)

Attacking Through the Update System



One way to attack the IVI system is to go after its software. If
your skill set primarily lies in the realm of software-related
services, you may feel most comfortable with this method,
and if you’ve ever researched embedded devices, such as
home Wi-Fi routers, some of the methods discussed in the
following should look familiar to you.

We’ll focus on using system updates to gain access to the
system. It may be possible to access the system through
other software means, such as a debug screen, an
undocumented backdoor, or a published vulnerability, but
we’ll focus on gaining access through software updates
because that method is the most generic across IVI systems
and is the primary one used to identify and access a target
system via software.

Identifying Your System

In order to fully understand your target IVI system, you must
first determine what kind of software it’s running. Next, you
need to figure out how to access this software, which often
involves looking for the methods the IVI uses to update or
load its operating system. Once you understand how the
system updates, you’ll have the knowledge you need to
identify vulnerabilities and modify the system.

Before you can begin making modifications, you need to
know what operating system the IVI is running. The easiest



way to do so is to search for the brand of the IVI—first, by
looking for a label on the outside of the IVI unit or frame. If
you don’t see a label, look for a display option on the
interface that displays software version numbers and often
the device name. Also, check online to see whether anyone
has already researched your target system and, if the system
is manufactured by a third party, whether it has a website
and firmware updates. Download any firmware or tools you
can find for later use. Find out how the system is updated. Is
there a map update service available? What other update
methods are available? Even if you find that system updates
are sent over the air, it’s usually possible to find USB drives
or a DVD containing map updates, like the one from a Honda
Civic shown in Figure 9-1.



Figure 9-1: NavTeq infotainment unit in an open state

This IVI has a normal CD tray for music at the top plus a
hidden plastic door at the bottom that folds down to reveal a
DVD tray holding the map software.

Determining the Update File Type

System updates are often delivered as compressed files
with .zip or .cab file extensions, but sometimes they have
nonstandard extensions, like .bin or .dat. If the update files
have .exe or .dll extensions, you’re probably looking at a
Microsoft Windows–based system.



To determine how the files are compressed and their target
architecture, view their headers with a hex editor or use a
tool such as file available on *nix-based systems.
The file command will report a file’s architecture, such as
ARM or, as with the Honda Civic IVI shown in Figure 9-1, a
Hitachi SuperH SH-4 Processor. This information is useful if
you want to compile new code for a device or if you plan on
writing or using an exploit against it.

If the file command hasn’t identified the type of file, you may
be looking at a packed image. To analyze a firmware bundle,
you can use a tool such as binwalk, which is a Python tool
that uses signatures to carve out files from a collected
binary. For instance, you can simply run binwalk on your
firmware image to see a list of identified file types:

Using the -e flag would extract each of these files for further
analysis and review. In this example, you can see a SquashFS
filesystem was detected.

This filesystem could be extracted with the -e flag and then



“unsquashed” using the unsquashfs tool to view the
filesystem, as I’ve done here:

$ binwalk -e firmware.bin
$ cd _firmware.bin.extracted
$ unsquashfs -f -d firmware.unsquashed
140090.squashfs

The binewalk -e commands will extract all known files
from firmware.bin to the folder _firmware.bin.extracted.
Inside that folder, you’ll see files named after their hex
address with an extension that matches the detected file
type. In this example, the squashfs file is
called 140090.squashfs because that was the location
in firmware.bin.

Modifying the System

Once you know your system’s OS, architecture, and update
method, the next thing to do is to see whether you can use
this information to modify it. Some updates are “protected”
by a digital signature, and these can be tricky to update. But
often there’s no protection or the update process will simply
use an MD5 hash check. The best way to find these
protections is to modify the existing update software and
trigger an update.

A good starting point for system modification is something



with a visible result, like a splash screen or icon because
once you successfully change it, you’ll know immediately
(see Figure 9-2).

Figure 9-2: Example modification: NavTeq unit with a
modified splash screen

Figure 9-2 shows how I modified the splash screen of an IVI
system by replacing the normal background image with a
Jolly Roger flag and the vehicle’s emblem with a character
from Street Fighter. Replacing images in your splash screen
is a safe way to ensure you can modify the IVI system
without much risk of breaking the system.



Find an image in your update file, modify it, then reburn the
update DVD and force a system update. (Find out how in the
IVI’s manual.) If the update files were compressed in a single
archive, be sure to recompress the modified version so that
it appears in the same format as before you modified it.

If you run into a checksum issue and your update fails, look
for a file in the update that might be a hash, such as a text
file containing strings
like 4cb1b61d0ef0ef683ddbed607c74f2bf. You’ll need to
update this file with the hash of your new modified image.
You may be able to guess the hashing algorithm by looking
at the size of the hash and performing some trial and error.
For instance, an 8-character hash, such as d579793f, may
be CRC32; a 32-character hash, such as
c46c4c478a4b6c32934ef6559d25002f, may be an MD5
hash; and a 40-character hash, such as 0aaedee31976f-
350a9ef821d6e7571116e848180, may be SHA-1. These are
the three most common hash algorithms, but there are
others you might come across, and a quick Google search or
reference to the tables
at https://en.wikipedia.org/wiki/List_of_hash_functions shoul
d give you a clue as to which algorithm was used.

The Linux tools crc32, md5sum, and sha1sum will let you
quickly calculate the hash of an existing file and compare it
to the contents of the original text file. If you can generate a



hash that matches that of the existing file, then you’ve found
the correct algorithm.

For example, say you find a single file on an update DVD
called Validation.dat that lists the contents of the files on the
DVD, as shown in Listing 9-1. This listing includes the names
of three files on the DVD and their associated hashes.

09AVN.bin       b46489c11cc0cf01e2f987c0237263f9
PROG_INFO.MNG   629757e00950898e680a61df41eac192
UPDATE_APL.EXE  7e1321b3c8423b30c1cb077a2e3ac4f0

Listing 9-1: Sample Validation.dat file found on an update
DVD

The length of the hash listed for each file—32 characters—
suggests that this might be an MD5 hash. To confirm, use
the Linux md5sum tool to generate an MD5 hash for each
file. Listing 9-2 shows what that would look like for
the 09AVN.bin file.

$ md5sum 09AVN.bin
b46489c11cc0cf01e2f987c0237263f9 09AVN.bin

Listing 9-2: Using md5sum to see the hash of
the 09AVN.bin file

Compare the hash for 09AVN.bin in Listing 9-1 with the
results of running md5sum in Listing 9-2, and you’ll see that



the hashes match; we’re indeed looking at an MD5 hash.
This result tells us that in order to modify 09AVN.bin, we’d
need to recalculate the MD5 hash and update
the Validation.dat file that contains all the hashes with the
new hash.

Another way to determine the algorithm used to create the
hash is to run the strings command on some of the binaries
or DLLs in your update package to search for strings in the
file, like MD5 or SHA. If the hash is small, like d579793f, and
CRC32 doesn’t seem to work, you’re probably looking at a
custom hash.

In order to create a custom hash, you need to understand
the algorithm used to create that hash, which will require
digging in with a disassembler, such as IDA Pro, Hopper, or
radare2, which is free. For instance, Listing 9-3 shows
sample output from a custom CRC algorithm viewed in
radare2:

|  .------> 0x00400733    488b9568fff. mov rdx, [rbp-0x98]
|- fcn.0040077c 107
|  ||| |    0x0040073a    488d855ffff. lea rax, [rbp-0xa1]
|  ||| |    0x00400741    4889d1       mov rcx, rdx
|  ||| |    0x00400744    ba01000000   mov edx, 0x1
|  ||| |    0x00400749    be01000000   mov esi, 0x1
|  ||| |    0x0040074e    4889c7       mov rdi, rax
|  ||| |    0x00400751    e8dafdffff   call sym.imp.fread



|  ||| |       sym.imp.fread()
|  ||| |    0x00400756    8b9560ffffff mov edx, [rbp-0xa0]
|  ||| |    0x0040075c    89d0         mov eax, edx ❶
|  ||| |    0x0040075e    c1e005       shl eax, 0x5 ❷
|  ||| |    0x00400761    01c2         add edx, eax ❸
|  ||| |    0x00400763    0fb6855ffff. movzx eax, byte [rbp-
0xa1]
|  ||| |    0x0040076a    0fbec0       movsx eax, al
|  ||| |    0x0040076d    01d0         add eax, edx
|  ||| |    0x0040076f    898560ffffff mov [rbp-0xa0], eax
|  ||| |    0x00400775    838564fffff. add dword [rbp-0x9c],
0x1
|  ||       ; CODE (CALL) XREF from 0x00400731
(fcn.0040066c)
|  |`-----> 0x0040077c    8b8564ffffff mov eax, [rbp-0x9c]
|  | | |    0x00400782    4863d0       movsxd rdx, eax
|  | | |    0x00400785    488b45a0     mov rax, [rbp-0x60]
|  | | |    0x00400789    4839c2       cmp rdx, rax
|  `======< 0x0040078c    7ca5         jl 0x400733

Listing 9-3: Disassembly of a CRC checksum function in
radare2

Unless you’re good at reading low-level assembler, this may
be a bit much to start with, but here we go. The algorithm
in Listing 9-3 reads in a byte at ❶, multiplies it by 5 at ❷,
and then, at ❸, adds it to the hash to calculate the final sum.



The rest of the assembly is mainly used by the read loop to
process the binary file.

Apps and Plugins

Whether your goal is to perform firmware updates, create
custom splash screens, or achieve other exploitation, you’ll
often find that you can get the information you need to
exploit or modify a vehicle by going after IVI applications
rather than the IVI operating system itself. Some systems
allow third-party applications to be installed on the IVI, often
through an app store or a dealer-customized interface. For
example, you’ll notice there’s usually a way for developers to
sideload apps for testing. Modifying an existing plugin or
creating your own can be a great way to execute code to
further unlock a system. Because standards are still being
written to define how applications should interface with the
vehicle, every manufacturer is free to implement its own API
and security models. These APIs are often ripe for abuse.

Identifying Vulnerabilities

Once you’ve found out how to update your system—whether
by modifying the splash screen, company logo, warranty
message, or other item—you’re ready to look for
vulnerabilities in the system. Your choice of how to proceed
will depend on your ultimate goal.



If you’re looking for existing vulnerabilities in the
infotainment unit, the next step is to pull all the binaries off
the IVI so you can analyze them. (This research is already
covered in great detail in several books about reverse
engineering, so I won’t go into detail here.) Check the
versions of binaries and libraries on the system. Often, even
in the case of map updates, the core OS is rarely updated,
and there’s a good chance that an already identified
vulnerability exists on the system. You may even find an
existing Metasploit exploit for the system!

If your goal is, for example, to create a malicious update that
wiretaps a vehicle’s Bluetooth driver, you have almost
everything you need at this stage to do so. The only piece
you may still need is the software development kit (SDK),
which you use to compile the target system. Getting your
hands on one will make your task much easier, although it’s
still possible to create or modify a binary using a hex editor
instead. Often the infotainment OS is built with a standard
SDK, such as the Microsoft Auto Platform.

For example, consider a navigation system with certain
protections designed to prevent a customer from using a
DVD-R in the system. The manufacturer’s original idea was
to charge owners $250 to purchase updated mapping DVDs,
and they wanted to prevent people from simply copying
someone else’s DVD.



In its attempt to prevent this type of sharing, the
manufacturer added several DVD checks to the navigation
system, as shown in the IDA display sample code in Figure
9-3. But say as a consumer you want to use a backup copy
of your purchased DVD in your system rather than the
original because your car gets really hot during the day and
you don’t want the DVD to warp.

While an ordinary consumer isn’t likely to be able to bypass
these DVD checks, it would be possible to locate the DVD
checks and replace them with no-operation instructions
(NOPs), which would make the checks literally do nothing.
Then you could upload this modified version of the DVD
check to your IVI and use your backup DVD for navigation.

NOTE

All the hacks mentioned so far can be done without
removing the unit. However, you could dig even deeper by
taking the unit out and going after the chips and memory
directly, as discussed in Chapter 6.



Figure 9-3: IDA view of DVD checks

Attacking the IVI Hardware

If you’re more comfortable attacking hardware than software
and you’re able to remove the IVI from the target vehicle, you
can go after the IVI system hardware instead. For that
matter, if you’ve had no luck accessing the IVI system
software, a hardware attack might provide additional insight
that’ll help you find a way in. You’ll sometimes find that you
can access system security keys by attacking the hardware
when something like the update method mentioned earlier
fails.

Dissecting the IVI Unit’s Connections

If you’re unable to gain access to a vehicle’s system through
the update method discussed in the previous section, you
can attack the IVI’s wiring and bus lines. Your first step will
be to remove the IVI unit and then trace the wires back to the



circuit board in order to identify its components and
connections, like the ones shown in Figure 9-4.

Figure 9-4: Connector view of a double DIN IVI unit

When you take your IVI unit out, you’ll see a lot of wires
because, unlike aftermarket radios, OEM units are heavily
connected to the vehicle. The back metal panel on the IVI
usually doubles as a heat sink, and each connector is often
separated by its functionality. (Some vehicles keep the
Bluetooth and cellular piece in another module, so if you’re
looking to research a wireless exploit and the IVI unit doesn’t
have this wireless module, continue looking for the
telematics module.)

By tracing the actual wires or looking at a wiring diagram like



the one shown in Figure 9-5, you can see that the Bluetooth
module is actually a separate piece from the navigation unit
(IVI). Notice in the diagram that the Bluetooth unit uses CAN
(B-CAN) on pin 18. If you look at the navigation unit’s wiring
diagram, you can see that instead of CAN, K-Line (pin 3) is
directly attached to the IVI unit. (We discussed these
protocols in Chapter 2.)



Figure 9-5: Hands-free wiring diagram

If you can determine whether your target is connected to a
network bus, you’ll know just how much your exploit can
control. At the very least, the bus directly connected to the
target can be influenced by any code you put on the target
system. For instance, in the wiring examples shown in Figure
9-5, a vulnerability in the Bluetooth module would give us
direct CAN access; however, if we exploited the IVI’s
navigation system, we’d need to use K-Line instead
(see Figure 9-6). You can tell which network you have
access to by looking at the wiring diagram in Figure 9-5 and
seeing whether K-Line or CAN are connected to your target
device. Which bus you’re on will affect your payload and
what networked systems you’ll be able to influence directly.



Figure 9-6: K-Line specified in the wiring diagram for the
navigation unit

Disassembling the IVI Unit

If your goal is to directly attack the system hardware or if you
don’t have a wiring diagram showing the connections to the
entertainment unit, you’ll need to start taking the unit apart.
Because IVI units are really compact and they bundle a lot of
functionality into a small area, taking them apart means
removing lots of screws and several layers of connected
circuit boards. The disassembly task is time consuming and
complicated and should probably be your last resort.

To begin disassembly, start by removing the case. Each unit
comes apart differently, but typically you can remove the
front and back plate screws and then work your way down
from the top. Once inside, you’ll most likely find a circuit
board like the one shown in Figure 9-7.



Although the print on the circuit board is a little hard to read,
you’ll probably find that many of the pins are labeled. Pay
close attention to any connectors that are attached to the
circuit board but not connected or that are covered by the
heat sink. You’ll often find that certain connectors used
during the manufacturing process are left behind,
disconnected on the circuit board. These can be a great way
in to the IVI unit. For example, Figure 9-8 shows a hidden
connector revealed once the back panel was removed on the
target IVI.

Hidden connectors are a great place to start when going
after a device’s firmware. These connectors often have
methods to load and debug the firmware running on the
systems, and they can also provide serial-style debugging
interfaces that you can use to see what’s happening with the
system. In particular, you should look for JTAG and UART
interfaces.



Figure 9-7: Many pins and connectors are labeled directly on
the PCB.



Figure 9-8: Nonexposed hidden connector

At this stage, you should start tracing the pins and looking at
data sheets for the onboard chips. After a bit of sleuthing as
to where these pins connect, you should have a better idea
of what you’re dealing with and the intended purpose of this
hidden connector. (See Chapter 8 for more on analyzing
circuit boards and reverse engineering hardware.)

Infotainment Test Benches

Instead of tampering with your own factory-installed
entertainment unit and risking damage, you can experiment
with a test bench system, whether that’s one from a junkyard



or an open source development platform. (Aftermarket
radios aren’t a good choice because they don’t usually tie
into the CAN bus network.) In this section, we’ll look at two
open source entertainment systems that you can run in a VM
on a PC, the GENIVI demo platform, and Automotive Grade,
which requires an IVI.

GENIVI Meta-IVI

The GENIVI Alliance (http://www.genivi.org/) is an
organization whose main objective is to drive the adoption of
open source IVI software. Membership is paid, but you can
download and participate in the GENIVI software projects for
free. Membership, especially board-level membership, in
GENIVI is very costly, but you can join the mailing list to
participate in some of the development and discussions. The
GENIVI system can be run directly on Linux with no need for
an IVI. It’s basically a collection of components that you can
use to build your own IVI.

In Figure 9-9, a high-level block diagram of the GENIVI
system shows how the pieces fit together.

The GENIVI demo platform has some basic human–machine
interface (HMI) functionality: the FSA PoC stands for fuel
stop advisor proof-of-concept (proof of concept because
certain of these apps aren’t used in production). The FSA is
part of the navigation system and is designed to alert drivers



if they are going to run out of fuel before reaching their
destination. The Web browser and audio manager PoCs
should be self-explanatory. Another component not shown in
the figure is the navigation app. This app is powered by the
open source Navit project (http://www.navit-project.org/)
and uses a plugin for the freely licensed OpenStreetMap
mapping software (https://www.openstreetmap.org/).

The GENIVI’s middleware components make up the core
GENIVI operating system, and they’re discussed here in the
order in which they appear in Figure 9-9 (persistency is
excluded since there isn’t currently any documentation on
this module):

Diagnostic log and trace (DLT) An AUTOSAR 4.0–
compatible logging and tracing module. (Autosar is simply
an automotive standards group;
see https://www.autosar.org/.) Some features of the DLT can
use TCP/IP, serial communications, or standard syslog.

Node state manager (NSM) Keeps track of the vehicle’s
running state and is responsible for shutdown and for
monitoring system health.

Node startup controller (NSC) Part of the NSM
persistence. Handles all data stored on a hard drive or flash
drive.



Audio manager daemon The audio hardware/software
abstraction layer.

Audio manager plugins Part of the audio manager daemon.

Webkit Web browser engine.

Automotive message broker (AMB) Allows an application
to access vehicle information from the CAN bus without
having to know the specific CAN bus packet layouts. (The
system you’re talking to must support OBD or AMB directly
in order for this to work.)



Figure 9-9: GENIVI software layout

Building the Environment

The easiest way to build the GENIVI system on Linux is to
use a Docker image. First, grab the easy build like this:

$ git clone https://github.com/gmacario/easy-build

NOTE

This Docker image won’t work on the eCryptfs filesystem



that Ubuntu uses on home directories, so make sure to
download and follow these instructions outside your default
home directory.

You’ll need Docker installed if you don’t already have it. On
Ubuntu, this command is:

$ sudo apt-get install docker.io

Then, cd into the easy-build/build-yocto-genivi folder in
your Home directory and run this:

$ sudo docker pull gmacario/build-yocto-genivi
$ sudo ./run.sh

Docker builds a little VM for you to work in, and
running run.sh should put you in a root terminal environment
in the Docker instance.

Now, finish the install by getting the rest of the GENIVI build
and creating an image that you can use in the QEMU VM.
Run the following commands:

# chmod a+w /dev/shm
# chown build.build ~build/shared
# su - build
$ export GENIVI=~/genivi-baseline
$ source $GENIVI/poky/oe-init-build-env ~/shared/my-
genivi-build



$ export TOPDIR=$PWD
$ sh ~/configure_build.sh
$ cd $TOPDIR
$ bitbake -k intrepid-image

The output of the final bitbake command should look
something like this:

Build Configuration:
BB_VERSION        = "1.24.0"
BUILD_SYS         = "x86_64-linux"
NATIVELSBSTRING   = "Ubuntu-14.04"
TARGET_SYS        = "i586-poky-linux"
MACHINE           = "qemux86"
DISTRO            = "poky-ivi-systemd"
DISTRO_VERSION    = "7.0.2"
TUNE_FEATURES     = "m32 i586"
TARGET_FPU        = ""
meta
meta-yocto
meta-yocto-bsp    = "
(detachedfromdf87cb2):df87cb27efeaea1455f20692f9f139
7c6fcab254"
meta-ivi
meta-ivi-bsp      = "
(detachedfrom7.0.2):54000a206e4df4d5a94db253d3cb8a
9f79e4a0ae"



meta-oe           = "
(detachedfrom9efaed9):9efaed99125b1c4324663d9a1b2d
3319c74e7278"

As of this writing, the build process errors out on fetching
the Bluez package.

Remove the following file, and try bitbake again:

$ rm /home/build/genivi-baseline/meta-ivi/meta-
ivi/recipes-connectivity/bluez5/bluez5_%.bbappend

Once everything is finished, you should have images in
your tmp/deploy/ images/qemux86/ folder.

Now you’re ready to run your image in an emulator. For ARM
emulation, run this:

$ $GENIVI/meta-ivi/scripts/runqemu horizon-image
vexpressa9

For x86, use this command:

$ $GENIVI/poky/scripts/runqemu horizon-image
qemux86

And this command is for x86-64:

$ $GENIVI/poky/scripts/runqemu horizon-image
qemux86-x64



You should now be ready to research a GENIVI-based IVI
system. As you’ve seen, the steps can be a bit daunting. The
most difficult part of working on GENIVI is getting it up and
running. Once you have a system to look at, you can pick any
executable to begin your security audit.

Automotive Grade Linux

Automotive Grade Linux (AGL) is an IVI system that you can
run on a physical IVI unit. Unlike GENIVI, AGL doesn’t have a
costly board structure. AGL’s goals are similar to those of
GENIVI: it’s trying to build an open source IVI unit as well as
other related parts, such as telematics and instrument
clusters.

As of this writing, you should be able to find a demo image of
AGL for VMware (last released in 2013), installation
instructions, and a bootable USB version for x86 at the AGL
website (http://automotivelinux.org/). These images are
designed to run on in-vehicle computer hardware, like the
Nexcom VTC-1000, a headless Linux device that comes with
CAN and touchscreens. Unlike the GENIVI project, the AGL
demonstration images are mainly designed and tested to run
on hardware, although it may be possible to run some
development images in a VM.

As you can see in Figure 9-10, the AGL demonstration image
has a very pretty interface, but don’t expect all applications



to run smoothly, as many are simply placeholders that are
actively being built. Because AGL is normally tested on
physical hardware, you’ll have to spend around $1,000 to get
the hardware necessary to install AGL smoothly. It’s also
possible to get an image to run on a QEMU VM as well. (One
nice thing about buying a development IVI is that you can
program it to work with any vehicle.)

Figure 9-10: Automotive Grade Linux sample screens

Acquiring an OEM IVI for Testing

If you decide to run a physical IVI unit for testing, you’ll have
to either pull a factory (OEM) IVI system from an existing



vehicle or buy a development IVI, such as the Nexcom VTC-
1000 or a model like those referenced in the Tizen hardware
compatibility list
(https://wiki.tizen.org/wiki/IVI/IVI_Platforms).

If you choose to go the OEM factory-installed route, you can
buy one from the dealership or pull one from a junkyard.
Development and OEM IVI units purchased directly from a
dealership will typically run from $800 to $2,000, so it’s
much more cost-effective to pull one from a junkyard,
though it may be difficult to find your target high-end IVI
system. You can also buy non-OEM aftermarket units, such
as Kenwood or Pioneer, which—while often cheaper—
typically won’t tie into a vehicle’s CAN system.

Unfortunately, pulling a radio out of a modern vehicle without
destroying it isn’t an easy task. You’ll often need to remove
the plastic around the gauge cluster on the dashboard and
the plastic around the radio before you can remove the radio
from its harness. If you run into an antitheft security code for
the radio, check the owner’s manual for the code, if you’re
lucky enough to find that. If you can’t find the code, be sure
to grab the VIN from the donor vehicle because you might
need it to get or reset the antitheft PIN. (If you grabbed the
ECU from the vehicle, remember you can query that to get
the VIN as well.)

You’ll need to refer to the wiring diagram for your IVI system



in order to get it to start on its own, but you can leave out
most of the wires that you’re not testing. If you’re building an
OEM-based unit, it may be worth your while to completely
disassemble the unit and to connect any test connectors so
that you’ll not only have the normal IVI system running but
also be able to access any of the hidden connectors.

Summary

You should now be comfortable analyzing your existing radio
system. We’ve covered how to safely work in a VM or test
environment to find vulnerabilities in IVI systems. These
systems hold a lot of code and are the most powerful
electronic systems in a vehicle. Mastery of the IVI units will
give you full control of your target, and there’s no part of a
vehicle with a greater concentration of attack surface than
the IVI system. When performing security research, an IVI
and telematics system will provide you with the most
valuable vulnerabilities, and you’ll find that the vulnerabilities
found in these systems will often be remote or wireless and
directly connected to the vehicle’s bus lines.


