
The Car Hacker's Handbook:
A Guide for the Penetration
Tester - Craig Smith (2016)
A. TOOLS OF THE TRADE

This section discusses different tools that you may want to
use when researching a vehicle. I’ve chosen to focus on low-
cost devices and software because it’s important to me that
as many people as possible participate in the research.

Open Garages is willing to showcase and promote tools to
aid with automotive research. If your company produces a
great product, feel free to contact Open Garages, but unless
there’s an open way to contribute to your tool, don’t expect
free publicity.

Hardware

In this section, we’ll cover boards, like the ChipWhisperer, as
well as dongle-like devices that provide CAN connectivity.
We’ll first look at lower-cost, open source hardware and then
explore some higher-end devices for those willing to spend a
bit more money.

Though there are many cost-effective devices for
communicating with the CAN bus, the software needed to
interact with these devices can be lacking, so you’ll often
need to write your own.

Lower-End CAN Devices

These devices are useful for sniffing the contents of your
CAN bus and injecting packets. They range from hobbyist-
level boards to professional devices that support lots of
custom features and can handle many different CAN buses
simultaneously.

Arduino Shields

Numerous Arduino and Arduino-like devices ($20 to
$30, https://www.arduino.cc/) will support CAN with the
addition of an Arduino shield. Here are some Arduino shields
that support CAN:

CANdiy-Shield MCP2515 CAN controller with two RJ45

connectors and a protoarea

ChuangZhou CAN-Bus Shield MCP2515 CAN controller
with a D-sub connector and screw terminals

DFRobot CAN-Bus Shield STM32 controller with a D-sub
connector

SeeedStudio SLD01105P CAN-Bus Shield MCP2515 CAN
controller with a D-sub connector

SparkFun SFE CAN-Bus Shield MCP2515 CAN controller
with a D-sub connector and an SD card holder; has
connectors for an LCD and GPS module

These shields are all pretty similar. Most run the MCP2515
CAN controller, though the DFRobot shield uses a STM32,
which is faster with more buffer memory.

Regardless of which shield you choose, you’ll have to write
code for the Arduino in order to sniff packets. Each shield
comes with a library designed to interface with the shield
programmatically. Ideally, these buses should support
something like the LAWICEL protocol, which allows them to
send and receive packets over serial via a userspace tool on
the laptop, such as SocketCAN.

Freematics OBD-II Telematics Kit

This Arduino-based OBD-II Bluetooth adapter kit has both
an OBD-II device and a data logger, and it comes with GPS,
an accelerometer, and gyro and temperature sensors.

CANtact

CANtact, an open source device by Eric Evenchick, is a very
affordable USB CAN device that works with Linux
SocketCAN. It uses a DB 9 connector and has the unique
advantage of using jumper pins to change which pins are
CAN and ground—a feature that allows it to support both
US- and UK-style DB9 to OBD-II connectors. You can get
CANtact from http://cantact.io/.

Raspberry Pi

The Raspberry Pi is an alternative to the Arduino that costs
about $30 to $40. The Pi provides a Linux operating system
but doesn’t include a CAN transceiver, so you’ll need to
purchase a shield.

One of the advantages of using a Raspberry Pi over an
Arduino is that it allows you to use the Linux SocketCAN
tools directly, without the need to buy additional hardware. In
general, a Raspberry Pi can talk to an MCP2515 over SPI
with just some basic wiring. Here are some Raspberry Pi
implementations:

Canberry MCP2515 CAN controller with screw terminals

only (no D-sub connector; $23)

Carberry Two CAN bus lines and two GMLAN lines, LIN, and
infrared (doesn’t appear to be an open source shield; $81)

PICAN CAN-Bus Board MCP2515 CAN controller with D-
sub connector and screw terminals ($40 to $50)

ChipKit Max32 Development Board and NetworkShield

The ChipKit board is a development board that together with
the NetworkShield can give you a network-interpretable CAN
system, as discussed in “Translating CAN Bus Messages”
on page 85. About $110, this open source hardware solution
is touted by the OpenXC standard and supports prebuilt
firmware from OpenXC, but you can also write your own
firmware for it and do raw CAN.

ELM327 Chipset

The ELM327 chipset is by far the cheapest chipset available
at anywhere (from $13 to $40), and it’s used in most cheap
OBD device. It communicates with the OBD over serial and
comes with just about any type of connector you can think
of, from USB to Bluetooth, Wi-Fi, and so on. You can connect
to ELM327 devices over serial, and they’re capable of
sending packets other than OBD/UDS packets. For a full list
of commands using the ELM327, see the data sheet
at http://elmelectronics.com/DSheets/ELM327DS.pdf.

Unfortunately, the available CAN Linux tools won’t run on the
ELM327, but Open Garages has begun a web initiative that
includes sniffing drivers for the ELM327 called CANiBUS
(https://github.com/Hive13/CANiBUS/). Be forewarned that
the ELM327 has limited buffer space, so you’ll lose packets
when sniffing and transmission can be a bit imprecise. If
you’re in a pinch, however, this is the cheapest route.

If you’re willing to open the device and solder a few wires to
your ELM327, you can reflash the firmware and convert it
into a LAWICEL-compatible device, which allows your uber
cheap ELM327 to work with Linux and show up as an slcanX
device! (You’ll find information on how to flash your ELM327
on the Area 515 makerspace blog from Des Moines, Iowa,
at https://area515.org/elm327-hacking/.)

GoodThopter Board

Travis Goodspeed, a well-known hardware hacker, has
released an open source, low-cost board with a CAN
interface called the GoodThopter. The GoodThopter, based
on his popular GoodFet devices, uses MCP2515 and
communicates over serial with its own custom interface.
You’ll need to completely assemble and solder together the
device yourself, but doing so should cost just a few dollars,
depending on the parts you have available at your local
hackerspace.

ELM-USB Interface

OBDTester.com sells a commercial ELM-32x-compatible
device for around $60. OBDTester.com are the maintainers
of the PyOBD library (see “Software” on page 246).

CAN232 and CANUSB Interface

LAWICEL AB produces the commercial CAN device CAN232,
which plugs into an RS232 port with a DB9 connector, and a
USB version called CANUSB (the latter goes for $110 to
$120). Because they’re made by the inventors of the
LAWICEL protocol, these devices are guaranteed to work
with the can-utils serial link modules.

VSCOM Adapter

The VSCOM is an affordable commercial USB CAN module
from Vision Systems (http://www.vscom.de/usb-to-can.htm)
that uses the LAWICEL protocol. VSCOM works with the
Linux can-utils over serial link (slcan) and provides good
results. The device costs around $100 to $130.

USB2CAN Interface

The USB2CAN converter from 8devices
(http://www.8devices.com/usb2can/) is the cheapest
alternative to a nonserial CAN interface. This small,
commercial USB device will show up as a standard can0

device in Linux and has the most integrated support in this
price range. Most devices that show up as canX raw devices
are PCI cards and typically cost significantly more than this
device.

EVTV Due Board

EVTV.me (http://store.evtv.me/) specializes in electric car
conversions. They make lots of great tools for doing crazy
things to your historic vehicle, like adding a Tesla drivetrain
to it. One of their tools is a $100 open source CAN sniffer
called the EVTV Due, which is basically an Arduino Due
with a built-in CAN transceiver and handle-screw terminals
to interface with your CAN lines. This board was originally
written to work solely with their SavvyCAN software, which
uses their Generalized Vehicle Reverse Engineering Tool
(GVRET), but it now supports SocketCAN as well.

CrossChasm C5 Data Logger

The CrossChasm C5
(http://www.crosschasm.com/technology/data-logging/) is a
commercial device that supports the Ford VI firmware and
costs about $120. The C5 supports the VI, which is also
known as the CAN translator, to convert CAN messages to
the OpenXC format, and it converts some proprietary CAN
packets into a generic format to send over Bluetooth.

CANBus Triple Board

As I write this, the CANBus Triple (http://canb.us/) is still in
development. It uses a wiring harness designed to support
Mazda, but it supports three CAN buses of any vehicle.

Higher-End CAN Devices

Higher-end devices will cost you more money, but they’re
capable of receiving more simultaneous channels and offer
more memory to help prevent packet loss. High-
performance tools often support eight channels or more, but
unless you’re working on racing vehicles, you probably don’t
need that many channels, so be sure that you need devices
like these before dropping any cash.

These devices often come with their own proprietary
software or a software subscription at sometimes significant
added cost. Make sure the software associated with the
device you choose does what you want because you’ll
usually be locked into their API and preferred hardware. If
you need higher-end devices that work with Linux, try
Kvaser, Peak, or EMS Wünsche. The devices from these
companies typically use the sja1000 chipset at prices
starting around $400.

CAN Bus Y-Splitter

A CAN bus Y-splitter is a very simple device that’s basically

one DLC connector broken into two connectors, which
allows you to plug a device into one port and a CAN sniffer
into the other. These typically cost around $10 on Amazon
and are actually quite simple to make yourself.

HackRF SDR

HackRF is an SDR from Great Scott Gadgets
(https://greatscottgadgets.com/hackrf/). This open source
hardware project can receive and transmit signals from 10
MHz to 6 GHz. At about $330, you can’t get a better SDR for
the price.

USRP SDR

USRP (http://www.ettus.com/) is a professional, modular
SDR device that you can build to suit your needs. USRP is
open source to varying degrees at prices ranging from $500
to $2,000.

ChipWhisperer Toolchain

NewAE Technologies produces the ChipWhisperer
(http://newae.com/chipwhisperer/). As discussed in “Side-
Channel Analysis with the ChipWhisperer” on page 134, the
ChipWhisperer is a system for side-channel attacks, such as
power analysis and clock glitching. Similar systems usually
cost $30,000 or more, but the ChipWhisperer is an open
source system that costs between $1,000 and $1,500.

Red Pitaya Board

Red Pitaya (http://redpitaya.com/) is an open source
measurements tool that for around $500 replaces expensive
measurement tools such as oscilloscopes, signal generators,
and spectrum analyzers. Red Pitaya has LabView and Matlab
interfaces, and you can write your own tools and
applications for it. It even supports extensions for things like
Arduino shields.

Software

As we did with hardware, we’ll focus first on open source
tools and then cover more expensive ones.

Wireshark

Wireshark (https://www.wireshark.org/) is a popular network
sniffing tool. It is possible to use Wireshark on a CAN bus
network as long as you are running Linux and using
SocketCAN. Wireshark doesn’t have any features to help
sort or decode CAN packets, but it could be useful in a
pinch.

PyOBD Module

PyOBD (http://www.obdtester.com/pyobd)—also known
as PyOBD2 and PyOBD-II—is a Python module that
communicates with ELM327 devices (see Figures A-1 and A-

2). It’s based on the PySerial library and is designed to give
you information on your OBD setup in a convenient interface.
For a specific scan tool fork of PyOBD, see Austin Murphy’s
OBD2 ScanTool (https://github.com/AustinMurphy/OBD2-
Scantool/), which is attempting to become a more complete
open source solution for diagnostic troubleshooting.

Figure A-1: PyOBD running diagnostic tests

Figure A-2: PyOBD reading sensor data

Linux Tools

Linux supports CAN drivers out of the box, and SocketCAN
provides a simple netlink (network card interface)
experience when dealing with CAN. You can use its can-
utils suite for a command line implementation, and as open
source software, it’s easy to extend functionality to other
utilities. (See Chapter 3 for more on SocketCAN.)

CANiBUS Server

CANiBUS is a web server written in Go by Open Garages

(see Figure A-3). This server allows a room full of
researchers to simultaneously work on the same vehicle,
whether for instructional purposes or team reversing
sessions. The Go language is portable to any operating
system, but you may have issues with low-level drivers on
certain platforms. For example, even if you’re running
CANiBUS on Linux, you won’t be able to directly interact with
SocketCAN because Go doesn’t support the necessary
socket flags to initialize the CAN interface. (This problem
could be addressed by implementing socketcand, but as of
this writing, that feature has yet to be implemented.)
CANiBUS does have a driver for ELM327 that supports
generic sniffing. You can learn more about CANiBUS
at http://wiki.hive13.org/view/CANiBUS/ and can download
the source from https://github.com/Hive13/CANiBUS/.

Figure A-3: CANiBUS group-based web sniffer

Kayak

Kayak (http://kayak.2codeornot2code.org/) is a Java-based
GUI for analyzing CAN traffic. It has several advanced
features, such as GPS tracking and record and playback
capabilities. It utilizes socketcand in order to work on other
operating systems, so you’ll need at least one Linux-based
sniffer to support Kayak. (You’ll find more detail on setup
and use in “Kayak” on page 46.)

SavvyCAN

SavvyCAN is a tool written by Collin Kidder of EVTV.me that
uses another framework designed by EVTV.me, GVRET, to
talk to HW sniffers such as the EVTV Due. SavvyCAN is an
open source, Qt GUI–based tool that works on multiple
operating systems (see Figure A-4). It includes several very
nice features, such as DBC editor, CAN bus graphing, log file
diffing, several reverse engineering tools, and all the normal
CAN sniffing features you would expect. SavvyCAN doesn’t
talk to SocketCAN, but it can read in several different logfile
formats, such as Bushmaster logs, Microchip logs, CRTD
formats, and generic CSV-formatted logfiles.

Figure A-4: SavvyCAN GUI

O2OO Data Logger

O2OO (http://www.vanheusden.com/O2OO/) is an open
source OBD-II data logger that works with ELM327 to record
data to a SQLite database for graphing purposes. It also
supports reading GPS data in NMEA format.

Caring Caribou

Caring Caribou

(https://github.com/CaringCaribou/caringcaribou/), written
in Python, is designed to be the Nmap of automotive
hacking. As of this writing, it’s still in its infancy, but it shows
a lot of potential. Caring Caribou has some unique features,
like the ability to brute-force diagnostic services, and
handles XCP. It also has your standard sniff-and-send CAN
functionality and will support your own modules.

c0f Fingerprinting Tool

CAN of Fingers (c0f) is an open source tool for fingerprinting
CAN bus systems that can be found
at https://github.com/zombieCraig/c0f/. It has some basic
support for identifying patterns in a CAN bus network
stream, which can be useful when trying to find a specific
signal on a noisy bus. (See “Using c0f” on page 206 for an
example of c0f at work.)

UDSim ECU Simulator

UDSim (https://github.com/zombieCraig/UDSim/) is a GUI
tool that can monitor a CAN bus and automatically learn the
devices attached to it by watching communications
(see Figure A-5). It’s designed to be used with another
diagnostic tool, such as a dealership tool or a scan tool from
a local automotive store.

Figure A-5: Sample screen from UDSim as it learns modules
off a test bench

UDSim has three modes: learning, simulation, and attack. In
learning mode, it identifies modules that respond to UDS
diagnostic queries and monitors the responses. In simulation
mode, it simulates a vehicle on the CAN bus to fool or test
diagnostic tools. In attack mode, it creates a fuzzing profile
for tools like Peach Fuzzer (http://www.peachfuzzer.com/).

Octane CAN Bus Sniffer

Octane (http://octane.gmu.edu/) is an open source CAN bus
sniffer and injector with a very nice interface for sending and

receiving CAN packets, including an XML trigger system.
Currently, it runs only on Windows.

AVRDUDESS GUI

AVRDUDESS (http://blog.zakkemble.co.uk/avrdudess-a-gui-
for-avrdude/) is a GUI frontend for AVRDUDE written in .NET,
though it works fine with Mono on Linux. You’ll see
AVRDUDESS in action in “Prepping Your Test with
AVRDUDESS” on page 139.

RomRaider ECU Tuner

RomRaider (http://www.romraider.com/) is an open source
tuning suite for the Subaru engine control unit that lets you
view and log data and tune the ECU (see Figure A-6). It’s
one of the few open source ECU tuners, and it can handle
3D views and live data logging. You’ll need a Tactrix Open
Port 2.0 cable and Tactrix EcuFlash software in order to
download and use the ECU’s firmware. Once you’ve
downloaded the flash with EcuFlash, you can edit it with
RomRaider. The editor is written in Java and currently works
on Windows and Linux, though EcuFlash isn’t supported on
Linux.

Figure A-6: RomRaider tuning editor

Komodo CAN Bus Sniffer

Komodo is a higher-end sniffer with a nice multioperating
system—Python SDK. It costs around $350 to $450
depending on whether you want a single- or dual-CAN
interface. Komodo has isolation capabilities to prevent your
computer from frying if you miswire something, as well
as eight general-purpose IO pins you can configure to
trigger actions from external devices. Komodo comes with
some decent software to get you up and running, but the
real advantage is that you can write your own Komodo
software.

Vehicle Spy

Vehicle Spy is a commercial tool from Intrepid Control
Systems (http://store.intrepidcs.com/) that’s specifically
designed for reversing CAN and other vehicle
communication protocols. The software requires one license
per NeoVI or ValueCAN device, both proprietary devices for
Vehicle Spy. The ValueCAN3 is the cheapest device that
works with Vehicle Spy. It has one CAN interface and costs
about $300. Add the Vehicle Spy Basic software and your
cost will be about $1,300.

The NeoIV devices are higher end, with multiple configurable
channels, starting at around $1,200. A basic package
contains a NeoIV (Red) and Vehicle Spy Basic for $2,000,
which saves a bit of money. Vehicle Spy Professional costs
about $2,600 without hardware. (You’ll find several options
on Intrepid’s site.)

All Intrepid hardware devices support uploading scripts to
run on the bus in real time. Vehicle Spy Basic supports
CAN/LIN RX/TX operations. You’ll need the professional
version only if car hacking is going to be a full-time project
for you or if you want to use ECU flashing or other advanced
features, such as Node Simulation, scripting on the sniffer, or
memory calibration.

