
The Car Hacker's Handbook:
A Guide for the Penetration
Tester - Craig Smith (2016)
Chapter 1. UNDERSTANDING THREAT
MODELS

If you come from the software penetrationtesting world,
you’re probably already familiar with attack surfaces. For the
rest of us, attack surface refers to all the possible ways to
attack a target, from vulnerabilities in individual components
to those that affect the entire vehicle.

When discussing the attack surface, we’re not considering
how to exploit a target; we’re concerned only with the entry
points into it. You might think of the attack surface like the



surface area versus the volume of an object. Two objects
can have the same volume but radically different surface
areas. The greater the surface area, the higher the exposure
to risk. If you consider an object’s volume its value, our goal
in hardening security is to create a low ratio of risk to value.

Finding Attack Surfaces

When evaluating a vehicle’s attack surface, think of yourself
as an evil spy who’s trying to do bad things to a vehicle. To
find weaknesses in the vehicle’s security, evaluate the
vehicle’s perimeter, and document the vehicle’s
environment. Be sure to consider all the ways that data can
get into a vehicle, which are all the ways that a vehicle
communicates with the outside world.

As you examine the exterior of the vehicle, ask yourself
these questions:

• What signals are received? Radio waves? Key fobs?
Distance sensors?

• Is there physical keypad access?

• Are there touch or motion sensors?

• If the vehicle is electric, how does it charge?

As you examine the interior, consider the following:



• What are the audio input options: CD? USB? Bluetooth?

• Are there diagnostic ports?

• What are the capabilities of the dashboard? Is there a GPS?
Bluetooth? Internet?

As you can see, there are many ways data can enter the
vehicle. If any of this data is malformed or intentionally
malicious, what happens? This is where threat modeling
comes in.

Threat Modeling

Entire books have been written about threat modeling, but
I’m going to give you just a quick tour so you can build your
own threat models. (If you have further questions or if this
section excites you, by all means, grab another book on the
subject!)

When threat modeling a car, you collect information about
the architecture of your target and create a diagram to
illustrate how parts of the car communicate. You then use
these maps to identify higher-risk inputs and to keep a
checklist of things to audit; this will help you prioritize entry
points that could yield the most return.

Threat models are typically made during the product
development and design process. If the company producing



a particular product has a good development life cycle, it
creates the threat model when product development begins
and continuously updates the model as the product moves
through the development life cycle. Threat models are living
documents that change as the target changes and as you
learn more about a target, so you should update your threat
model often.

Your threat model can consist of different levels; if a process
in your model is complicated, you should consider breaking
it down further by adding more levels to your diagrams. In
the beginning, however, Level 2 is about as far as you’ll be
able to go. We’ll discuss the various levels in the following
sections, beginning with Threat Level 0.

Level 0: Bird’s-Eye View

At this level, we use the checklist we built when considering
attack surfaces. Think about how data can enter the vehicle.
Draw the vehicle in the center, and then label the external
and internal spaces. Figure 1-1 illustrates a possible Level 0
diagram.

The rectangular boxes are the inputs, and the circle in the
center represents the entire vehicle. On their way to the
vehicle, the inputs cross two dotted lines, which represent
external and internal threats.



The vehicle circle doesn’t represent an input but rather a
complex process—that is, a series of tasks that could be
broken down further. Processes are numbered, and as you
can see, this one is number 1.0. If you had more than one
complex piece in your threat model, you would number
those in succession. For instance, you would label a second
process 2.0; a third, 3.0; and so on. As you learn about your
vehicle’s features, you update the diagram. It’s okay if you
don’t recognize all of the acronyms in the diagram yet; you
will soon.



Figure 1-1: Level 0 inputs

Level 1: Receivers

To move on to the Level 1 diagram, pick a process to explore.
Because we have only the one process in our diagram, let’s
dig in to the vehicle process and focus on what each input
talks to.



The Level 1 map shown in Figure 1-2 is almost identical to
that in Level 0. The only difference is that here we specify
the vehicle connections that receive the Level 0 input. We
won’t look at the receivers in depth just yet; we’re looking
only at the basic device or area that the input talks to.



Figure 1-2: Level 1 map of inputs and vehicle connections

Notice in Figure 1-2 that we number each receiver. The first
digit represents the process label from the Level 0 diagram
in Figure 1-1, and the second digit is the number of the
receiver. Because the infotainment unit is both a complex
process and an input, we’ve given it a process circle. We
now have three other processes: immobilizer, ECU, and
TPMS Receiver.

The dotted lines in the Level 1 map represent divisions
between trust boundaries. The inputs at the top of the
diagram are the least trusted, and the ones at the bottom are
the most trusted. The more trust boundaries that a
communication channel crosses, the more risky that channel
becomes.

Level 2: Receiver Breakdown

At Level 2, we examine the communication taking place
inside the vehicle. Our sample diagram (Figure 1-3) focuses
on a Linux-based infotainment console, receiver 1.1. This is
one of the more complicated receivers, and it’s often directly
connected to the vehicle’s internal network.

In Figure 1-3, we group the communications channels into
boxes with dashed lines to once again represent trust
boundaries. Now there’s a new trust boundary inside the



infotainment console called kernel space. Systems that talk
directly to the kernel hold higher risk than ones that talk to
system applications because they may bypass any access
control mechanisms on the infotainment unit. Therefore, the
cellular channel is higher risk than the Wi-Fi channel
because it crosses a trust boundary into kernel space; the
Wi-Fi channel, on the other hand, communicates with the
WPA supplicant process in user space.



Figure 1-3: Level 2 map of the infotainment console

This system is a Linux-based in-vehicle infotainment (IVI)
system, and it uses parts common to a Linux environment. In
the kernel space, you see references to the kernel modules



udev, HSI, and Kvaser, which receive input from our threat
model. The udev module loads USB devices, HSI is a serial
driver that handles cellular communication, and Kvaser is the
vehicle’s network driver.

The numbering pattern for Level 2 is now X.X.X, and the
identification system is the same as before. At Level 0, we
took the vehicle process that was 1.0 and dove deeper into
it. We then marked all processes within Level 1 as 1.1, 1.2, and
so on. Next, we selected the infotainment process marked
1.1 and broke it down further for the Level 2 diagram. At Level
2, therefore, we labeled all complex processes as 1.1.1, 1.1.2,
and so on. (You can continue the same numbering scheme
as you dive even deeper into the processes. The numbering
scheme is for documentation purposes; it allows you to
reference the exact process at the appropriate level.)

NOTE

Ideally at this stage, you’d map out which processes handle
which inputs, but we’ll have to guess for now. In the real
world, you’d need to reverse engineer the infotainment
system to find this information.

When building or designing an automotive system, you
should continue to drill down into as many complex
processes as possible. Bring in the development team, and
start discussing the methods and libraries used by each



application so you can incorporate them into their own threat
diagrams. You’ll likely find that the trust boundaries at the
application level will usually be between the application and
the kernel, between the application and the libraries,
between the application and other applications, and even
between functions. When exploring these connections, mark
methods that have higher privileges or that handle more
sensitive information.

Threat Identification

Now that we’ve gone two levels deep into our threat
modeling maps, we can begin to identify potential threats.
Threat identification is often more fun to do with a group of
people and a whiteboard, but you can do it on your own as a
thought exercise.

Let’s try this exercise together. Start at Level 0—the bird’s-
eye view—and consider potential high-level problems with
inputs, receivers, and threat boundaries. Now let’s list all
potential threats with our threat models.

Level 0: Bird’s-Eye View

When determining potential threats at Level 0, try to stay
high level. Some of these threats may seem unrealistic
because you’re aware of additional hurdles or protections,
but it’s important to include all possible threats in this list,



even if some have already been addressed. The point here is
to brainstorm all the risks of each process and input.

The high-level threats at Level 0 are that an attacker could:

• Remotely take over a vehicle

• Shut down a vehicle

• Spy on vehicle occupants

• Unlock a vehicle

• Steal a vehicle

• Track a vehicle

• Thwart safety systems

• Install malware on the vehicle

At first, it may be difficult to come up with a bunch of attack
scenarios. It’s often good to have people who are not
engineers also participate at this stage because as a
developer or an engineer, you tend to be so involved in the
inner workings that it’s natural to discredit ideas without
even meaning to.

Be creative; try to come up with the most James Bond–villain
attack you can think of. Maybe think of other attack



scenarios and whether they could also apply to vehicles. For
example, consider ransomware, a malicious software that
can encrypt or lock you out of your computer or phone until
you pay money to someone controlling the software
remotely. Could this be used on vehicles? The answer is yes.
Write ransomware down.

Level 1: Receivers

Threat identification at Level 1 focuses more on the
connections of each piece rather than connections that
might be made directly to an input. The vulnerabilities that
we posit at this level relate to vulnerabilities that affect what
connects to the devices in a vehicle.

We’ll break these down into threat groupings that relate to
cellular, Wi-Fi, key fob (KES), tire pressure monitor sensor
(TPMS), infotainment console, USB, Bluetooth, and
controller area network (CAN) bus connections. As you can
see in the following lists, there are many potential ways into a
vehicle.

Cellular

An attacker could exploit the cellular connection in a vehicle
to:

• Access the internal vehicle network from anywhere



• Exploit the application in the infotainment unit that handles
incoming calls

• Access the subscriber identity module (SIM) through the
infotainment unit

• Use a cellular network to connect to the remote diagnostic
system (OnStar)

• Eavesdrop on cellular communications

• Jam distress calls

• Track the vehicle’s movements

• Set up a fake Global System for Mobile Communications
(GSM) base station

Wi-Fi

An attacker could exploit the Wi-Fi connection to:

• Access the vehicle network from up to 300 yards away or
more

• Find an exploit for the software that handles incoming
connections

• Install malicious code on the infotainment unit

• Break the Wi-Fi password



• Set up a fake dealer access point to trick the vehicle into
thinking it’s being serviced

• Intercept communications passing through the Wi-Fi
network

• Track the vehicle

Key Fob

An attacker could exploit the key fob connection to:

• Send malformed key fob requests that put the vehicle’s
immobilizer in an unknown state. (The immobilizer is
supposed to keep the vehicle locked so it can’t be hotwired.
We need to ensure that it maintains proper functionality.)

• Actively probe an immobilizer to drain the car battery

• Lock out a key

• Capture cryptographic information leaked from the
immobilizer during the handshake process

• Brute-force the key fob algorithm

• Clone the key fob

• Jam the key fob signal

• Drain the power from the key fob



Tire Pressure Monitor Sensor

An attacker could exploit the TPMS connection to:

• Send an impossible condition to the engine control unit
(ECU), causing a fault that could then be exploited

• Trick the ECU into overcorrecting for spoofed road
conditions

• Put the TPMS receiver or the ECU into an unrecoverable
state that might cause a driver to pull over to check for a
reported flat or that might even shut down the vehicle

• Track a vehicle based on the TPMS unique IDs

• Spoof the TPMS signal to set off internal alarms

Infotainment Console

An attacker could exploit the infotainment console
connection to:

• Put the console into debug mode

• Alter diagnostic settings

• Find an input bug that causes unexpected results

• Install malware to the console



• Use a malicious application to access the internal CAN bus
network

• Use a malicious application to eavesdrop on actions taken
by vehicle occupants

• Use a malicious application to spoof data displayed to the
user, such as the vehicle location

USB

An attacker could use a USB port connection to:

• Install malware on the infotainment unit

• Exploit a flaw in the USB stack of the infotainment unit

• Attach a malicious USB device with specially crafted files
designed to break importers on the infotainment unit, such
as the address book and MP3 decoders

• Install modified update software on the vehicle

• Short the USB port, thus damaging the infotainment
system

Bluetooth

An attacker could use a Bluetooth connection to:

• Execute code on the infotainment unit



• Exploit a flaw in the Bluetooth stack of the infotainment unit

• Upload malformed information, such as a corrupted
address book designed to execute code

• Access the vehicle from close ranges (less than 300 feet)

• Jam the Bluetooth device

Controller Area Network

An attacker could exploit the CAN bus connection to:

• Install a malicious diagnostic device to send packets to the
CAN bus

• Plug directly in to a CAN bus to attempt to start a vehicle
without a key

• Plug directly in to a CAN bus to upload malware

• Install a malicious diagnostic device to track the vehicle

• Install a malicious diagnostic device to enable remote
communications directly to the CAN bus, making a normally
internal attack now an external threat

Level 2: Receiver Breakdown

At Level 2, we can talk more about identifying specific
threats. As we look at exactly which application handles



which connection, we can start to perform validation based
on possible threats.

We’ll break up threats into five groups: Bluez (the Bluetooth
daemon), the wpa_supplicant (the Wi-Fi daemon), HSI
(high-speed synchronous interface cellular kernel module),
udev (kernel device manager), and the Kvaser driver (CAN
transceiver driver). In the following lists, I’ve specified threats
to each program.

Bluez

Older or unpatched versions of the Bluez daemon:

• May be exploitable

• May be unable to handle corrupt address books

• May not be configured to ensure proper encryption

• May not be configured to handle secure handshaking

• May use default passkeys

wpa_supplicant

• Older versions may be exploitable

• May not enforce proper WPA2 style wireless encryption

• May connect to malicious access points



• May leak information on the driver via BSSID (network
interface)

HSI

• Older versions may be exploitable

• May be susceptible to injectable serial communication
(man-in-the-middle attacks in which the attacker inserts
serial commands into the data stream)

udev

• Older, unpatched versions may be susceptible to attack

• May not have a maintained whitelist of devices, allowing an
attacker to load additional drivers or USB devices that were
not tested or intended for use

• May allow an attacker to load foreign devices, such as a
keyboard to access the infotainment system

Kvaser Driver

• Older, unpatched versions may be exploitable

• May allow an attacker to upload malicious firmware to the
Kvaser device

These lists of potential vulnerabilities are by no means



exhaustive, but they should give you an idea of how this
brainstorming session works. If you were to go to a Level 3
map of potential threats to your vehicle, you would pick one
of the processes, like HSI, and start to look at its kernel
source to identify sensitive methods and dependencies that
might be vulnerable to attack.

Threat Rating Systems

Having documented many of our threats, we can now rate
them with a risk level. Common rating systems include
DREAD, ASIL, and MIL-STD-882E. DREAD is commonly used
in web testing, while the automotive industry and
government use ISO 26262 ASIL and MIL-STD-882E,
respectively, for threat rating. Unfortunately, ISO 26262 ASIL
and MIL-STD-882E are focused on safety failures and are
not adequate to handle malicious threats. More details on
these standards can be found
at http://opengarages.org/index.php/Policies_and_Guideline
s.

The DREAD Rating System

DREAD stands for the following:

Damage potential How great is the damage?

Reproducibility How easy is it to reproduce?



Exploitability How easy is it to attack?

Affected users How many users are affected?

Discoverabilty How easy is it to find the vulnerability?

Table 1-1 lists the risk levels from 1 to 3 for each rating
category.

Table 1-1: DREAD Rating System

 Rating
category

High (3) Medium (2) Low (1)

D Damage
potential

Could
subvert the
security
system and
gain full
trust,
ultimately
taking over
the
environment

Could leak
sensitive
information

Could leak
trivial
information

R Reproducibility Is always
reproducible

Can be
reproduced
only during a
specific
condition or
window of
time

Is very
difficult to
reproduce,
even given
specific
information
about the
vulnerability

E Exploitability Allows a
novice

Allows a
skilled

Allows only
a skilled



attacker to
execute the
exploit

attacker to
create an
attack that
could be
used
repeatedly

attacker
with in-
depth
knowledge
to perform
the attack

A Affected users Affects all
users,
including
the default
setup user
and key
customers

Affects some
users or
specific
setups

Affects a
very small
percentage
of users;
typically
affects an
obscure
feature

D Discoverability Can be
easily found
in a
published
explanation
of the attack

Affects a
seldom-used
part,
meaning an
attacker
would need
to be very
creative to
discover a
malicious use
for it

Is obscure,
meaning it’s
unlikely
attackers
would find
a way to
exploit it

Now we can apply each DREAD category from Table 1-1 to
an identified threat from earlier in the chapter and score the
threat from low to high (1–3). For instance, if we take the
Level 2 HSI threats discussed in “Level 2: Receiver
Breakdown” on page 10, we can come up with threat ratings
like the ones shown in Table 1-2.



Table 1-2: HSI Level 2 Threats with DREAD Scores

HSI threats D R E A D Total

An older, unpatched version of HSI
that may be exploitable

3 3 2 3 3 14

An HSI that may be susceptible to
injectable serial communication

2 2 2 3 3 12

You can identify the overall rating by using the values in the
Total column, as shown in Table 1-3.

Table 1-3: DREAD Risk Scoring Chart

Total Risk level

5–7 Low

8–11 Medium

12–15 High

When performing a risk assessment, it’s good practice to
leave the scoring results visible so that the person reading
the results can better understand the risks. In the case of the
HSI threats, we can assign high risk to each of these threats,
as shown in Table 1-4.

Table 1-4: HSI Level 2 Threats with DREAD Risk Levels
Applied

HSI threats D R E A D Total Risk

An older, unpatched version 3 3 2 3 3 14 High



of HSI that may be exploitable

An HSI that may be
susceptible to injectable serial
communication

2 2 2 3 3 12 High

Although both risks are marked as high, we can see that the
older version of the HSI model poses a slightly higher risk
than do the injectable serial attacks, so we can make it a
priority to address this risk first. We can also see that the
reason why the injectable serial communication risk is lower
is that the damage is less severe and the exploit is harder to
reproduce than that of an old version of HSI.

CVSS: An Alternative to DREAD

If DREAD isn’t detailed enough for you, consider the more
detailed risk methodology known as the common
vulnerability scoring system (CVSS). CVSS offers many more
categories and details than DREAD in three groups: base,
temporal, and environmental. Each group is subdivided into
sub areas—six for base, three for temporal, and five for
environmental—for a total of 14 scoring areas! (For detailed
information on how CVSS works,
see http://www.first.org/cvss/cvss-guide.)

NOTE

While we could use ISO 26262 ASIL or MIL-STD-882E when
rating threats, we want more detail than just Risk =



Probability × Severity. If you have to pick between these two
systems for a security review, go with MIL-STD-882E from
the Department of Defense (DoD). The Automotive Safety
Integrity Level (ASIL) system will too often have a risk fall
into the QM ranking, which basically translates to “meh.”
The DoD’s system tends to result in a higher ranking, which
equates to a higher value for the cost of a life. Also, MIL-
STD-882E is designed to be applied throughout the life
cycle of a system, including disposal, which is a nice fit with
a secure development life cycle.

Working with Threat Model Results

At this point, we have a layout of many of the potential
threats to our vehicle, and we have them ranked by risk. Now
what? Well, that depends on what team you’re on. To use
military jargon, the attacker side is the “red team,” and the
defender side is the “blue team.” If you’re on the red team,
your next step is to start attacking the highest risk areas that
are likely to have the best chance of success. If you’re on the
blue team, go back to your risk chart and modify each threat
with a countermeasure.

For example, if we were to take the two risks in “The DREAD
Rating System” on page 11, we could add a countermeasure
section to each. Table 1-5 includes the countermeasure for
the HSI code execution risk, and Table 1-6 includes the
countermeasure for the risk of HSI interception.



Table 1-5: HSI Code Execution Risk

Threat Executes code in the kernel space

Risk High

Attack technique Exploit vulnerability in older versions of HSI

Countermeasures Kernel and kernel modules should be
updated with the latest kernel releases

Table 1-6: Intercepting HSI Commands

Threat Intercepts and injects commands from
the cellular network

Risk High

Attack technique Intercept serial communications over HSI

Countermeasures All commands sent over cellular are
cryptographically signed

Now you have a documented list of high-risk vulnerabilities
with solutions. You can prioritize any solutions not currently
implemented based on the risk of not implementing that
solution.

Summary

In this chapter you learned the importance of using threat
models to identify and document your security posture, and
of getting both technical and nontechnical people to
brainstorm possible scenarios. We then drilled down into
these scenarios to identify all potential risks. Using a scoring



system, we ranked and categorized each potential risk. After
assessing threats in this way, we ended up with a document
that defined our current product security posture, any
countermeasure currently in place, and a task list of high-
priority items that still need to be addressed.


