
The Car Hacker's Handbook:
A Guide for the Penetration
Tester - Craig Smith (2016)
Chapter 3. VEHICLE COMMUNICATION
WITH SOCKETCAN

When you begin using a CAN for vehicle communications,
you may well find it to be a hodgepodge of different drivers
and software utilities. The ideal would be to unify the CAN
tools and their different interfaces into a common interface
so we could easily share information between tools.

Luckily, there’s a set of tools with a common interface, and
it’s free! If you have Linux or install Linux on a virtual machine
(VM), you already have this interface. The interface, called

SocketCAN, was created on the Open Source development
site BerliOS in 2006. Today, the term SocketCAN is used to
refer to the implementation of CAN drivers as network
devices, like Ethernet cards, and to describe application
access to the CAN bus via the network socket–programming
interface. In this chapter we’ll set up SocketCAN so that
we’re more easily able to communicate with the vehicle.

Volkswagen Group Research contributed the original
SocketCAN implementation, which supports built-in CAN
chips and card drivers, external USB and serial CAN devices,
and virtual CAN devices. The can-utils package provides
several applications and tools to interact with the CAN
network devices, CAN-specific protocols, and the ability to
set up a virtual CAN environment. In order to test many of
the examples in this book, install a recent version in a Linux
VM on your system. The newest versions of Ubuntu
have can-utils in their standard repositories.

SocketCAN ties into the Linux networking stack, which
makes it very easy to create tools to support CAN.
SocketCAN applications can use standard C socket calls
with a custom network protocol family, PF_CAN. This
functionality allows the kernel to handle CAN device drivers
and to interface with existing networking hardware to
provide a common interface and user-space utilities.

Figure 3-1 compares the implementation of traditional CAN

software with that of a unified SocketCAN.

Figure 3-1: SocketCAN layout (left) and traditional CAN
software (right)

With traditional CAN software, the application has its own
protocol that typically talks to a character device, like a serial
driver, and then the actual hardware driver. On the left of the
figure, SocketCAN is implemented in the Linux kernel. By
creating its own CAN protocol family, SocketCAN can
integrate with the existing network device drivers, thus
enabling applications to treat a CAN bus interface as if it’s a
generic network interface.

Setting Up can-utils to Connect to CAN Devices

In order to install can-utils, you must be running a Linux
distribution from 2008 or later or one running the 2.6.25
Linux kernel or higher. First we’ll install can-utils, then cover
how to configure it for your particular setup.

Installing can-utils

You should be able to use your package manager to
install can-utils. Here’s a Debian/Ubuntu example:

$ sudo apt-get install can-utils

If you don’t have can-utils in your package manager, install it
from source with the git command:

$ git clone https://github.com/linux-can/can-utils

As of this writing, can-utils has configure, make, and make
install files, but in older versions, you’d just enter make to
install from source.

Configuring Built-In Chipsets

The next step depends on your hardware. If you’re looking
for a CAN sniffer, you should check the list of supported
Linux drivers to ensure your device is compatible. As of this
writing, the Linux built-in CAN drivers support the following
chipsets:

• Atmel AT91SAM SoCs

• Bosch CC770

• ESD CAN-PCI/331 cards

• Freescale FlexCAN

• Freescale MPC52xx SoCs (MSCAN)

• Intel AN82527

• Microchip MCP251x

• NXP (Philips) SJA1000

• TI’s SoCs

CAN controllers, like the SJA1000, are usually built into ISA,
PCI, and PCMCIA cards or other embedded hardware. For
example, the EMS PCMCIA card driver implements access to
its SJA1000 chip. When you insert the EMS PCMCIA card
into a laptop, the ems_pcmcia module loads into the kernel,
which then requires the sja1000 module and
the can_dev module to be loaded. The can_dev module
provides standard configuration interfaces—for example, for
setting bit rates for the CAN controllers.

The Linux kernel’s modular concept also applies to CAN
hardware drivers that attach CAN controllers via bus
hardware, such as the kvaser_pci, peak_pci, and so on.
When you plug in a supported device, these modules should

automatically load, and you should see them when you enter
the lsmod command. USB drivers, like usb8dev, usually
implement a proprietary USB communication protocol and,
therefore, do not load a CAN controller driver.

For example, when you plug in a PEAK-System PCAN-USB
adapter, the can_dev module loads and
the peak_usb module finalizes its initialization. Using the
display message command dmesg, you should see output
similar to this:

$ dmesg
--snip --
[8603.743057] CAN device driver interface
[8603.748745] peak_usb 3-2:1.0: PEAK-System PCAN-USB
adapter hwrev 28 serial
 FFFFFFFF (1 channel)
[8603.749554] peak_usb 3-2:1.0 can0: attached to PCAN-
USB channel 0 (device
 255)
[8603.749664] usbcore: registered new interface driver
peak_usb

You can verify the interface loaded properly with ifconfig and
ensure a can0 interface is now present:

$ ifconfig can0
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-

00-00-00-00-00-00-00-00-00-00-00
 UP RUNNING NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Now set the CAN bus speed. (You’ll find more information on
bus speeds in Chapter 5.) The key component you need to
set is the bit rate. This is the speed of the bus. A typical
value for high-speed CAN (HS-CAN) is 500Kbps. Values of
250Kbps or 125Kbps are typical for lower-speed CAN buses.

$ sudo ip link set can0 type can bitrate 500000
$ sudo ip link set up can0

Once you bring up the can0 device, you should be able to
use the tools from can-utils on this interface. Linux uses
netlink to communicate between the kernel and user-space
tools. You can access netlink with the ip link command. To
see all the netlink options, enter the following:

$ ip link set can0 type can help

If you begin to see odd behavior, such as a lack of packet
captures and packet errors, the interface may have stopped.
If you’re working with an external device, just unplug or
reset. If the device is internal, run these commands to reset

it:

$ sudo ip link set canX type can restart-ms 100
$ sudo ip link set canX type can restart

Configuring Serial CAN Devices

External CAN devices usually communicate via serial. In fact,
even USB devices on a vehicle often communicate through a
serial interface—typically an FTDI chip from Future
Technology Devices International, Ltd.

The following devices are known to work with SocketCAN:

• Any device that supports the LAWICEL protocol

• CAN232/CANUSB serial adapters
(http://www.can232.com/)

• VSCOM USB-to-serial adapter (http://www.vscom.de/usb-
to-can.htm)

• CANtact (http://cantact.io)

NOTE

If you’re using an Arduino or building your own sniffer, you
must implement the LAWICEL protocol—also known as the
SLCAN protocol—in your firmware in order for your device
to work. For details,

seehttp://www.can232.com/docs/canusb_manual.pdf and ht
tps://github.com/linux-can/can-
misc/blob/master/docs/SLCAN-API.pdf.

In order to use one of the USB-to-serial adapters, you must
first initialize both the serial hardware and the baud rate on
the CAN bus:

$ slcand -o -s6 -t hw -S 3000000 /dev/ttyUSB0
$ ip link set up slcan0

The slcand daemon provides the interface needed to
translate serial communication to the network driver, slcan0.
The following options can be passed to slcand:

-o Opens the device

-s6 Sets the CAN bus baud rate and speed (see Table 3-1)

-t hw Specifies the serial flow control, either HW (hardware)
or SW (software)

-S 3000000 Sets the serial baud, or bit rate, speed

/dev/ttyUSB0 Your USB FTDI device

Table 3-1 lists the numbers passed to -s and the
corresponding baud rates.

Table 3-1: Numbers and Corresponding Baud Rates

Number Baud

0 10Kbps

1 20Kbps

2 50Kbps

3 100Kbps

4 125Kbps

5 250Kbps

6 500Kbps

7 800Kbps

8 1Mbps

As you can see, entering -s6 prepares the device to
communicate with a 500Kbps CAN bus network.

With these options set, you should now have
an slcan0 device. To confirm, enter the following:

$ ifconfig slcan0
slcan0 Link encap:UNSPEC HWaddr 00-00-00-00-00-
00-00-00-00-00-00-00-00-00-00-00
 NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Most of the information returned by ifconfig is set to generic

default values, which may be all 0s. This is normal. We’re
simply making sure that we can see the device with ifconfig.
If we see an slcan0 device, we know that we should be able
to use our tools to communicate over serial with the CAN
controller.

NOTE

At this point, it may be good to see whether your physical
sniffer device has additional lights. Often a CAN sniffer will
have green and red lights to signify that it can communicate
correctly with the CAN bus. Your CAN device must be
plugged in to your computer and the vehicle in order for
these lights to function properly. Not all devices have these
lights. (Check your device’s manual.)

Setting Up a Virtual CAN Network

If you don’t have CAN hardware to play with, fear not. You
can set up a virtual CAN network for testing. To do so, simply
load the vcan module.

If you check dmesg, you shouldn’t see much more than a
message like this:

$ dmesg
[604882.283392] vcan: Virtual CAN interface driver

Now you just set up the interface as discussed in

“Configuring Built-In Chipsets” on page 37 but without
specifying a baud rate for the virtual interface.

$ ip link add dev vcan0 type vcan
$ ip link set up vcan0

To verify your setup, enter the following:

$ ifconfig vcan0
vcan0 Link encap:UNSPEC HWaddr 00-00-00-00-00-
00-00-00-00-00-00-00-00-00-00-00
 UP RUNNING NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

As long as you see a vcan0 in the output, you’re ready to go.

The CAN Utilities Suite

With our CAN device up and running, let’s take a high-level
look at the can-utils. They’re listed and described briefly
here; we’ll use them throughout the book, and we’ll explore
them in greater detail as we use them.

asc2log This tool parses ASCII CAN dumps in the following
form into a standard SocketCAN logfile format:

0.002367 1 390x Rx d 8 17 00 14 00 C0 00 08 00

bcmserver Jan-Niklas Meier’s proof-of-concept (PoC)
broadcast manager server takes commands like the
following:

vcan1 A 1 0 123 8 11 22 33 44 55 66 77 88

By default, it listens on port 28600. It can be used to handle
some busy work when dealing with repetitive CAN
messages.

canbusload This tool determines which ID is most
responsible for putting the most traffic on the bus and takes
the following arguments:

You can specify as many interfaces as you like and
have canbusload display a bar graph of the worst bandwidth
offenders.

can-calc-bit-timing This command calculates the bit rate
and the appropriate register values for each CAN chipset
supported by the kernel.

candump This utility dumps CAN packets. It can also take
filters and log packets.

canfdtest This tool performs send and receive tests over
two CAN buses.

cangen This command generates CAN packets and can
transmit them at set intervals. It can also generate random
packets.

cangw This tool manages gateways between different CAN
buses and can also filter and modify packets before
forwarding them on to the next bus.

canlogserver This utility listens on port 28700 (by default)
for CAN packets and logs them in standard format to stdout.

canplayer This command replays packets saved in the
standard SocketCAN “compact” format.

cansend This tool sends a single CAN frame to the network.

cansniffer This interactive sniffer groups packets by ID and
highlights changed bytes.

isotpdump This tool dumps ISO-TP CAN packets, which are
explained in “Sending Data with ISO-TP and CAN” on page
55.

isotprecv This utility receives ISO-TP CAN packets and
outputs to stdout.

isotpsend This command sends ISO-TP CAN packets that
are piped in from stdin.

isotpserver This tool implements TCP/IP bridging to ISO-TP

and accepts data packets in the
format 1122334455667788.

isotpsniffer This interactive sniffer is like cansniffer but
designed for ISO-TP packets.

isotptun This utility creates a network tunnel over the CAN
network.

log2asc This tool converts from standard compact format to
the following ASCII format:

0.002367 1 390x Rx d 8 17 00 14 00 C0 00 08 00

log2long This command converts from standard compact
format to a user readable format.

slcan_attach This is a command line tool for serial-line CAN
devices.

slcand This daemon handles serial-line CAN devices.

slcanpty This tool creates a Linux psuedoterminal interface
(PTY) to communicate with a serial-based CAN interface.

Installing Additional Kernel Modules

Some of the more advanced and experimental commands,
such as the ISO-TP–based ones, require you to install
additional kernel modules, such as can-isotp, before they

can be used. As of this writing, these additional modules
haven’t been included with the standard Linux kernels, and
you’ll likely have to compile them separately. You can grab
the additional CAN kernel modules like this:

$ git clone https://gitorious.org/linux-can/can-
modules.git
$ cd can-modules/net/can
$ sudo ./make_isotp.sh

Once make finishes, it should create a can-isotp.ko file.

If you run make in the root folder of the repository, it’ll try to
compile some out-of-sync modules, so it’s best to compile
only the module that you need in the current directory. To
load the newly compiled can-isotp.ko module, run insmod:

sudo insmod ./can-isotp.ko

dmesg should show that it loaded properly:

$ dmesg
[830053.381705] can: isotp protocol (rev 20141116 alpha)

NOTE

Once the ISO-TP driver has proven to be stable, it should be
moved into the stable kernel branch in Linux. Depending on
when you’re reading this, it may already have been moved,

so be sure to check whether it’s already installed before
compiling your own.

The can-isotp.ko Module

The can-isotp.ko module is a CAN protocol implementation
inside the Linux network layer that requires the system to
load the can.ko core module. The can.ko module provides
the network layer infrastructure for all in-kernel CAN
protocol implementations, like can_raw.ko, can_bcm.ko,
and can-gw.ko. If it’s working correctly, you should see this
output in response to the following command:

sudo insmod ./can-isotp.ko
[830053.374734] can: controller area network core (rev
20120528 abi 9)
[830053.374746] NET: Registered protocol family 29
[830053.376897] can: netlink gateway (rev 20130117)
max_hops=1

When can.ko is not loaded, you get the following:

sudo insmod ./can-isotp.ko
insmod: ERROR: could not insert module ./can-isotp.ko:
Unknown symbol in
module

If you’ve forgotten to attach your CAN device or load the
CAN kernel module, this is the strange error message you’ll

see. If you were to enter dmesg for more information, you’d
see a series of missing symbols referenced in the error
messages.

$ dmesg
[830760.460054] can_isotp: Unknown symbol
can_rx_unregister (err 0)
[830760.460134] can_isotp: Unknown symbol
can_proto_register (err 0)
[830760.460186] can_isotp: Unknown symbol can_send
(err 0)
[830760.460220] can_isotp: Unknown symbol can_ioctl (err
0)
[830760.460311] can_isotp: Unknown symbol
can_proto_unregister (err 0)
[830760.460345] can_isotp: Unknown symbol
can_rx_register (err 0)

The dmesg output shows a lot of Unknown
symbol messages, especially around can_x methods.
(Ignore the (err 0) messages.) These messages tell us that
the _isotop module can’t find methods related to standard
CAN functions. These messages indicate that you need to
load the can.ko module. Once loaded, everything should
work fine.

Coding SocketCAN Applications

While can-utils is very robust, you’ll find that you want to
write custom tools to perform specific actions. (If you’re not
a developer, you may want to skip this section.)

Connecting to the CAN Socket

In order to write your own utilities, you first need to connect
to the CAN socket. Connecting to a CAN socket on Linux is
the same as connecting to any networking socket that you
might know from TCP/IP network programming. The
following shows C code that’s specific to CAN as well as the
minimum required code to connect to a CAN socket. This
code snippet will bind to can0 as a raw CAN socket.

int s;
struct sockaddr_can addr;
struct ifreq ifr;

s = socket(PF_CAN, SOCK_RAW, CAN_RAW);

strcpy(ifr.ifr_name, "can0");
ioctl(s, SIOCGIFINDEX, &ifr);

addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;

bind(s, (struct sockaddr *)&addr, sizeof(addr));

Let’s dissect the sections that are specific to CAN:

s = socket(PF_CAN, SOCK_RAW, CAN_RAW);

This line specifies the protocol family, PF_CAN, and defines
the socket as CAN_RAW. You can also use CAN_BCM if you
plan on making a broadcast manager (BCM) service. A BCM
service is a more complex structure that can monitor for byte
changes and the queue of cyclic CAN packet transmissions.

These two lines name the interface:

strcpy(ifr.ifr_name, "can0");
ioctl(s, SIOCGIFINDEX, &ifr);

These lines set up the CAN family for sockaddr and then
bind to the socket, allowing you to read packets off the
network:

addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;

Setting Up the CAN Frame

Next we want to setup the CAN frame and read the bytes off
the CAN network into our newly defined structure:

struct can_frame frame;
nbytes = read(s, &frame, sizeof(struct can_frame));

The can_frame is defined in linux/can.h as:

struct can_frame {
 canid_t can_id; /* 32 bit CAN_ID + EFF/RTR/ERR flags */
 __u8 can_dlc; /* frame payload length in byte (0 .. 8) */
 __u8 data[8] __attribute__((aligned(8)));
};

Writing to the CAN network is just like the read command
but in reverse. Simple, eh?

The Procfs Interface

The SocketCAN network-layer modules implement
a procfs interface as well. Having access to information
in proc can make bash scripting easier and also provide a
quick way to see what the kernel is doing. You’ll find the
provided network-layer information
in /proc/net/can/ and /proc/net/can-bcm/. You can see a list
of hooks into the CAN receiver by searching the rcvlist_all file
with cat:

$ cat /proc/net/can/rcvlist_all
 receive list 'rx_all':
 (vcan3: no entry)
 (vcan2: no entry)
 (vcan1: no entry)
 device can_id can_mask function userdata matches

 ident
 vcan0 000 00000000 f88e6370 f6c6f400 0
raw
 (any: no entry)

Some other useful procfs files include the following:

stats CAN network-layer stats

reset_stats Resets the stats (for example, for
measurements)

version SocketCAN version

You can limit the maximum length of transmitted packets
in proc:

$ echo 1000 > /sys/class/net/can0/tx_queue_len

Set this value to whatever you feel will be the maximum
packet length for your application. You typically won’t need
to change this value, but if you find that you’re having
throttling issues, you may want to fiddle with it.

The Socketcand Daemon

Socketcand (https://github.com/dschanoeh/socketcand)
provides a network interface into a CAN network. Although it
doesn’t include can-utils, it can still be very useful, especially
when developing an application in a programming language

like Go that can’t set the CAN low-level socket options
described in this chapter.

Socketcand includes a full protocol to control its interaction
with the CAN bus. For example, you can send the following
line to socketcand to open a loopback interface:

< can0 C listen_only loopback three_samples >

The protocol for socketcand is essentially the same as that
of Jan-Niklas Meier’s BCM server mentioned earlier; it’s
actually a fork of the BCM server. (Socketcand, however, is a
bit more robust than the BCM server.)

Kayak

Kayak (http://kayak.2codeornot2code.org/), a Java-based
GUI for CAN diagnostics and monitoring (see Figure 3-2), is
one of the best tools for use with socketcand. Kayak links
with OpenStreetMaps for mapping and can handle CAN
definitions. As a Java-based application, it’s platform
independent, so it leans on socketcand to handle
communication to the CAN transceivers.

You can download a binary package for Kayak or compile
from source. In order to compile Kayak, install the latest
version of Apache Maven, and clone the Kayak git repository
(git://github.com/dschanoeh/Kayak). Once the clone is
complete, run the following:

You should find your binary in
the Kayak/application/target/kayak/bin folder.

Figure 3-2: The Kayak GUI

Before you launch Kayak, start socketcand:

NOTE

You can attach as many CAN devices as you want to
socketcand, separated by commas.

Next, start Kayak and take the following steps:

1. Create a new project with CTRL-N and give it a name.

2. Right-click the project and choose Newbus; then, give
your bus a name (see Figure 3-3).

Figure 3-3: Creating a name for the CAN bus

3. Click the Connections tab at the right; your socketcand
should show up under Auto Discovery (see Figure 3-4).

Figure 3-4: Finding Auto Discovery under the Connections
tab

4. Drag the socketcand connection to the bus connection.
(The bus connection should say Connection: None before
it’s set up.) To see the bus, you may have to expand it by
clicking the drop-down arrow next to the bus name, as
shown in Figure 3-5.

Figure 3-5: Setting up the bus connection

5. Right-click the bus and choose Open RAW view.

6. Press the play button (circled in Figure 3-6); you should
start to see packets from the CAN bus.

Figure 3-6: Open RAW view and press the play button to see
packets from the CAN bus.

7. Choose Colorize from the toolbar to make it easier to
see and read the changing packets.

Kayak can easily record and play back packet capture
sessions, and it supports CAN definitions (stored in an open
KDC format). As of this writing, the GUI doesn’t support
creating definitions, but I’ll show how to create definitions
later.

Kayak is a great open source tool that can work on any
platform. In addition, it has a friendly GUI with advanced
features that allow you to define the CAN packets you see
and view them graphically.

Summary

In this chapter, you learned how to use SocketCAN as a
unified interface for CAN devices and how to set up your
device and apply the appropriate bit rate for your CAN bus. I
reviewed all of the default CAN utilities in the can-
utils package that come with SocketCAN support, and I
showed you how to write low-level C code to directly
interface with the CAN sockets. Finally, you learned how to
use socketcand to allow remote interaction with your CAN
devices and set up Kayak to work with socketcand. Now that
you’ve set up communication with your vehicle, you’re just
about ready to try out some attacks.

